Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales—Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2

The basal ganglia are involved in the motivational and habitual control of motor and cognitive behaviors. Striatum, the largest basal ganglia input stage, integrates cortical and thalamic inputs in functionally segregated cortico-basal ganglia-thalamic loops, and in addition the basal ganglia output nuclei control targets in the brainstem. Striatal function depends on the balance between the direct pathway medium spiny neurons (D1-MSNs) that express D1 dopamine receptors and the indirect pathway MSNs that express D2 dopamine receptors. The striatal microstructure is also divided into striosomes and matrix compartments, based on the differential expression of several proteins. Dopaminergic afferents from the midbrain and local cholinergic interneurons play crucial roles for basal ganglia function, and striatal signaling via the striosomes in turn regulates the midbrain dopaminergic system directly and via the lateral habenula. Consequently, abnormal functions of the basal ganglia neuromodulatory system underlie many neurological and psychiatric disorders. Neuromodulation acts on multiple structural levels, ranging from the subcellular level to behavior, both in health and disease. For example, neuromodulation affects membrane excitability and controls synaptic plasticity and thus learning in the basal ganglia. However, it is not clear on what time scales these different effects are implemented. Phosphorylation of ion channels and the resulting membrane effects are typically studied over minutes while it has been shown that neuromodulation can affect behavior within a few hundred milliseconds. So how do these seemingly contradictory effects fit together? Here we first briefly review neuromodulation of the basal ganglia, with a focus on dopamine. We furthermore use biophysically detailed multi-compartmental models to integrate experimental data regarding dopaminergic effects on individual membrane conductances with the aim to explain the resulting cellular level dopaminergic effects. In particular we predict dopaminergic effects on Kv4.2 in D1-MSNs. Finally, we also explore dynamical aspects of the onset of neuromodulation effects in multi-scale computational models combining biochemical signaling cascades and multi-compartmental neuron models.

[1]  P. Mcgeer,et al.  Influence of noncholinergic drugs on rat striatal acetylcholine levels. , 1974, Brain research.

[2]  B. Givens,et al.  Dopamine electrophysiology of ventral pallidal/substantia innominata neurons: comparison with the dorsal globus pallidus. , 1991, The Journal of pharmacology and experimental therapeutics.

[3]  P. Calabresi,et al.  Dopamine, Acetylcholine and Nitric Oxide Systems Interact to Induce Corticostriatal Synaptic Plasticity , 2003, Reviews in the neurosciences.

[4]  C. Cepeda,et al.  Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Dagoberto Tapia,et al.  Control of the subthalamic innervation of the rat globus pallidus by D2/3 and D4 dopamine receptors. , 2006, Journal of neurophysiology.

[6]  J. Bargas,et al.  Dopaminergic Modulation of Axon Collaterals Interconnecting Spiny Neurons of the Rat Striatum , 2003, The Journal of Neuroscience.

[7]  Abdelhamid Benazzouz,et al.  Dopaminergic Control of the Globus Pallidus through Activation of D2 Receptors and Its Impact on the Electrical Activity of Subthalamic Nucleus and Substantia Nigra Reticulata Neurons , 2015, PloS one.

[8]  Tristan D. McClure-Begley,et al.  Faculty Opinions recommendation of Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. , 2012 .

[9]  C. Cepeda,et al.  Modulation of AMPA currents by D2 dopamine receptors in striatal medium‐sized spiny neurons: are dendrites necessary? , 2004, The European journal of neuroscience.

[10]  J. Penney,et al.  The functional anatomy of basal ganglia disorders , 1989, Trends in Neurosciences.

[11]  C. Kellendonk,et al.  Striatal D2 Receptors Regulate Dendritic Morphology of Medium Spiny Neurons via Kir2 Channels , 2012, The Journal of Neuroscience.

[12]  T Nagatsu,et al.  [Tyrosine hydroxylase]. , 1969, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[13]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[14]  J. Bargas,et al.  Dopaminergic modulation of striatal neurons, circuits, and assemblies , 2011, Neuroscience.

[15]  KouichiC . Nakamura,et al.  Dichotomous Organization of the External Globus Pallidus , 2012, Neuron.

[16]  Jeanette Kotaleski,et al.  The Effects of NMDA Subunit Composition on Calcium Influx and Spike Timing-Dependent Plasticity in Striatal Medium Spiny Neurons , 2012, PLoS Comput. Biol..

[17]  W. Schultz Getting Formal with Dopamine and Reward , 2002, Neuron.

[18]  S. Grillner,et al.  Evolutionary conservation of the habenular nuclei and their circuitry controlling the dopamine and 5-hydroxytryptophan (5-HT) systems , 2011, Proceedings of the National Academy of Sciences.

[19]  Minmin Luo,et al.  Npas1+ Pallidal Neurons Target Striatal Projection Neurons , 2016, The Journal of Neuroscience.

[20]  Anatol C. Kreitzer,et al.  Distinct roles for direct and indirect pathway striatal neurons in reinforcement , 2012, Nature Neuroscience.

[21]  D. Sibley,et al.  Dopamine Reduction of GABA Currents in Striatal Medium-sized Spiny Neurons is Mediated Principally by the D1 Receptor Subtype , 2007, Neurochemical Research.

[22]  T. F. Freund,et al.  Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines , 1984, Neuroscience.

[23]  W. Catterall,et al.  Functional properties and differential neuromodulation of Nav1.6 channels , 2008, Molecular and Cellular Neuroscience.

[24]  D. Surmeier,et al.  Cholinergic and dopaminergic modulation of potassium conductances in neostriatal neurons. , 1993, Advances in neurology.

[25]  Joshua L Plotkin,et al.  Differential Excitability and Modulation of Striatal Medium Spiny Neuron Dendrites , 2008, The Journal of Neuroscience.

[26]  K. Gurney,et al.  A Physiologically Plausible Model of Action Selection and Oscillatory Activity in the Basal Ganglia , 2006, The Journal of Neuroscience.

[27]  P. Redgrave,et al.  The basal ganglia: a vertebrate solution to the selection problem? , 1999, Neuroscience.

[28]  P. Greengard,et al.  Dichotomous Dopaminergic Control of Striatal Synaptic Plasticity , 2008, Science.

[29]  J. Bargas,et al.  D1 Receptor Activation Enhances Evoked Discharge in Neostriatal Medium Spiny Neurons by Modulating an L-Type Ca2+ Conductance , 1997, The Journal of Neuroscience.

[30]  A. Weindl,et al.  Sensory processing in Parkinson's and Huntington's disease: investigations with 3D H(2)(15)O-PET. , 1999, Brain : a journal of neurology.

[31]  F. J. White,et al.  Whole-Cell Plasticity in Cocaine Withdrawal: Reduced Sodium Currents in Nucleus Accumbens Neurons , 1998, The Journal of Neuroscience.

[32]  J. Sweatt,et al.  PKA Modulation of Kv4.2-Encoded A-Type Potassium Channels Requires Formation of a Supramolecular Complex , 2002, The Journal of Neuroscience.

[33]  M. Howe,et al.  Rapid signaling in distinct dopaminergic axons during locomotion and reward , 2016, Nature.

[34]  Jérôme Baufreton,et al.  D2‐like dopamine receptor‐mediated modulation of activity‐dependent plasticity at GABAergic synapses in the subthalamic nucleus , 2008, The Journal of physiology.

[35]  Anu G. Nair,et al.  Detection of phasic dopamine by D1 and D2 striatal medium spiny neurons , 2017, The Journal of physiology.

[36]  S. Grant,et al.  Opposing effects of PSD‐93 and PSD‐95 on long‐term potentiation and spike timing‐dependent plasticity , 2008, The Journal of physiology.

[37]  W. Catterall,et al.  Voltage-Dependent Neuromodulation of Na+ Channels by D1-Like Dopamine Receptors in Rat Hippocampal Neurons , 1999, The Journal of Neuroscience.

[38]  C. Gerfen CHAPTER 18 – Basal Ganglia , 2004 .

[39]  Kuei Yuan Tseng,et al.  Cortical Slow Oscillatory Activity Is Reflected in the Membrane Potential and Spike Trains of Striatal Neurons in Rats with Chronic Nigrostriatal Lesions , 2001, The Journal of Neuroscience.

[40]  D. Surmeier,et al.  Dopamine receptor subtypes colocalize in rat striatonigral neurons. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[41]  H. Markram,et al.  t Synchrony Generation in Recurrent Networks with Frequency-Dependent Synapses , 2000, The Journal of Neuroscience.

[42]  Clement Hamani,et al.  Subthalamic Nucleus Deep Brain Stimulation: Basic Concepts and Novel Perspectives , 2017, eNeuro.

[43]  Y. Kawaguchi,et al.  Dopamine D1-Like Receptor Activation Excites Rat Striatal Large Aspiny Neurons In Vitro , 1998, The Journal of Neuroscience.

[44]  M. R. DeLong,et al.  Tactile spatial acuity and roughness discrimination: Impairments due to aging and Parkinson's disease , 1997, Neurology.

[45]  K. Mackie,et al.  Modulation of Ca2+ channels by G-protein βγ subunits , 1996, Nature.

[46]  Peter Redgrave,et al.  Basal Ganglia , 2020, Encyclopedia of Autism Spectrum Disorders.

[47]  Wenxiao Lu,et al.  D1 dopamine receptor stimulation increases GluR1 phosphorylation in postnatal nucleus accumbens cultures , 2002, Journal of neurochemistry.

[48]  P. Greengard,et al.  D(1) dopamine receptor activation reduces GABA(A) receptor currents in neostriatal neurons through a PKA/DARPP-32/PP1 signaling cascade. , 2000, Journal of neurophysiology.

[49]  Jeanette Hellgren Kotaleski,et al.  Untangling Basal Ganglia Network Dynamics and Function: Role of Dopamine Depletion and Inhibition Investigated in a Spiking Network Model , 2016, eNeuro.

[50]  J A Obeso,et al.  Temporal discrimination is abnormal in Parkinson's disease. , 1992, Brain : a journal of neurology.

[51]  Vivian M. Hernández,et al.  The external globus pallidus: progress and perspectives , 2016, The European journal of neuroscience.

[52]  D. Togasaki,et al.  Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by instrastriatal injection of 6-hydroxydopamine , 1995, Neuroscience.

[53]  H. Kasai,et al.  Dihydropyridine‐sensitive and omega‐conotoxin‐sensitive calcium channels in a mammalian neuroblastoma‐glioma cell line. , 1992, The Journal of physiology.

[54]  Paul Greengard,et al.  Dopamine enhancement of NMDA currents in dissociated medium-sized striatal neurons: role of D1 receptors and DARPP-32. , 2002, Journal of neurophysiology.

[55]  F. Zhou,et al.  An Ultra-Short Dopamine Pathway Regulates Basal Ganglia Output , 2009, The Journal of Neuroscience.

[56]  D. Reis,et al.  Ultrastructural immunocytochemical localization of tyrosine hydroxylase in the neostriatum , 1981, Brain Research.

[57]  M. Sheng,et al.  Regulation of NMDA receptors by an associated phosphatase-kinase signaling complex. , 1999, Science.

[58]  A. Barbeau The pathogenesis of Parkinson's disease: a new hypothesis. , 1962, Canadian Medical Association journal.

[59]  M. Podda,et al.  Dopamine D1-like receptor activation depolarizes medium spiny neurons of the mouse nucleus accumbens by inhibiting inwardly rectifying K+ currents through a cAMP-dependent protein kinase A-independent mechanism , 2010, Neuroscience.

[60]  T. Stanford,et al.  Subcortical loops through the basal ganglia , 2005, Trends in Neurosciences.

[61]  Nao Chuhma,et al.  Dopamine Neurons Mediate a Fast Excitatory Signal via Their Glutamatergic Synapses , 2004, The Journal of Neuroscience.

[62]  Susana Q. Lima,et al.  Complementary Contributions of Striatal Projection Pathways to Action Initiation and Execution , 2016, Cell.

[63]  G. E. Alexander,et al.  Parallel organization of functionally segregated circuits linking basal ganglia and cortex. , 1986, Annual review of neuroscience.

[64]  Enrico Bracci,et al.  Dopamine excites fast-spiking interneurons in the striatum. , 2002, Journal of neurophysiology.

[65]  Christian Rosenmund,et al.  Anchoring of protein kinase A is required for modulation of AMPA/kainate receptors on hippocampal neurons , 1994, Nature.

[66]  Peter Brown,et al.  Parkinsonian Beta Oscillations in the External Globus Pallidus and Their Relationship with Subthalamic Nucleus Activity , 2008, The Journal of Neuroscience.

[67]  S. Mikula,et al.  Complete 3D visualization of primate striosomes by KChIP1 immunostaining , 2009, The Journal of comparative neurology.

[68]  C. Gerfen,et al.  Modulation of striatal projection systems by dopamine. , 2011, Annual review of neuroscience.

[69]  Joshua L. Plotkin,et al.  Cell type-specific plasticity of striatal projection neurons in parkinsonism and L-DOPA-induced dyskinesia , 2014, Nature Communications.

[70]  David G Standaert,et al.  Dopamine D1-dependent trafficking of striatal N-methyl-D-aspartate glutamate receptors requires Fyn protein tyrosine kinase but not DARPP-32. , 2004, Molecular pharmacology.

[71]  D. Surmeier,et al.  D1/D5 Dopamine Receptor Activation Differentially Modulates Rapidly Inactivating and Persistent Sodium Currents in Prefrontal Cortex Pyramidal Neurons , 2001, The Journal of Neuroscience.

[72]  J. Girault,et al.  Modulation of the voltage‐gated sodium current in rat striatal neurons by DARPP‐32, an inhibitor of protein phosphatase , 1998, The European journal of neuroscience.

[73]  F. Gonon,et al.  Cortical Inputs and GABA Interneurons Imbalance Projection Neurons in the Striatum of Parkinsonian Rats , 2006, The Journal of Neuroscience.

[74]  Jun B. Ding,et al.  Cell-type–specific inhibition of the dendritic plateau potential in striatal spiny projection neurons , 2017, Proceedings of the National Academy of Sciences.

[75]  Nelson Spruston,et al.  Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites , 2005, The Journal of physiology.

[76]  D. A. Bergstrom,et al.  Nigrostriatal lesion and dopamine agonists affect firing patterns of rodent entopeduncular nucleus neurons. , 2002, Journal of neurophysiology.

[77]  L. Finkel,et al.  NMDA/AMPA Ratio Impacts State Transitions and Entrainment to Oscillations in a Computational Model of the Nucleus Accumbens Medium Spiny Projection Neuron , 2005, The Journal of Neuroscience.

[78]  B. Sabatini,et al.  Multiphasic Modulation of Cholinergic Interneurons by Nigrostriatal Afferents , 2014, The Journal of Neuroscience.

[79]  N. Castro,et al.  Direct inhibition of the N‐methyl‐D‐aspartate receptor channel by dopamine and (+)‐SKF38393 , 1999, British journal of pharmacology.

[80]  Steven S. Vogel,et al.  Concurrent Activation of Striatal Direct and Indirect Pathways During Action Initiation , 2013, Nature.

[81]  S. Green,et al.  cAMP-Dependent Regulation of Cardiac L-Type Ca2+ Channels Requires Membrane Targeting of PKA and Phosphorylation of Channel Subunits , 1997, Neuron.

[82]  George M. Church,et al.  Highly Multiplexed Subcellular RNA Sequencing in Situ , 2014, Science.

[83]  I. Pastan,et al.  Acetylcholine enhancement in the nucleus accumbens prevents addictive behaviors of cocaine and morphine , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[84]  Anatol C. Kreitzer,et al.  Investigating striatal function through cell-type-specific manipulations , 2011, Neuroscience.

[85]  N. Koshikawa,et al.  D(2)-like dopamine receptors differentially regulate unitary IPSCs depending on presynaptic GABAergic neuron subtypes in rat nucleus accumbens shell. , 2012, Journal of neurophysiology.

[86]  Zhe Zhang,et al.  Wakefulness Is Governed by GABA and Histamine Cotransmission , 2015, Neuron.

[87]  Jeanette Hellgren Kotaleski,et al.  GABAergic Circuits Control Spike-Timing-Dependent Plasticity , 2013, The Journal of Neuroscience.

[88]  John A Wolf,et al.  Effects of dopaminergic modulation on the integrative properties of the ventral striatal medium spiny neuron. , 2007, Journal of neurophysiology.

[89]  Arvind Kumar,et al.  Existence and Control of Go/No-Go Decision Transition Threshold in the Striatum , 2015, PLoS Comput. Biol..

[90]  T. Wichmann,et al.  Activation of nigral and pallidal dopamine D1-like receptors modulates basal ganglia outflow in monkeys. , 2007, Journal of neurophysiology.

[91]  A. Lansner,et al.  Functional Relevance of Different Basal Ganglia Pathways Investigated in a Spiking Model with Reward Dependent Plasticity , 2016, Front. Neural Circuits.

[92]  Andrew M. Wikenheiser,et al.  KChIP4a regulates Kv4.2 channel trafficking through PKA phosphorylation , 2010, Molecular and Cellular Neuroscience.

[93]  C. Cepeda,et al.  Dopaminergic modulation of NMDA-induced whole cell currents in neostriatal neurons in slices: contribution of calcium conductances. , 1998, Journal of neurophysiology.

[94]  M. Zigmond,et al.  Influence of dopamine on GABA release in striatum: evidence for D1–D2 interactions and non-synaptic influences , 1997, Neuroscience.

[95]  A. Kalmbach,et al.  Heterogeneity in Dopamine Neuron Synaptic Actions Across the Striatum and Its Relevance for Schizophrenia , 2017, Biological Psychiatry.

[96]  K. Blackwell,et al.  Dynamic modulation of spike timing-dependent calcium influx during corticostriatal upstates. , 2013, Journal of neurophysiology.

[97]  Z. Xiang,et al.  Roles of the M1 Muscarinic Acetylcholine Receptor Subtype in the Regulation of Basal Ganglia Function and Implications for the Treatment of Parkinson's Disease , 2012, Journal of Pharmacology and Experimental Therapeutics.

[98]  J. Bargas,et al.  Inhibitory action of dopamine involves a subthreshold Cs+-sensitive conductance in neostriatal neurons , 1996, Experimental Brain Research.

[99]  T. Aosaki,et al.  Acetylcholine–dopamine balance hypothesis in the striatum: An update , 2010, Geriatrics & gerontology international.

[100]  D. Hoffman,et al.  AKAP79/150 Impacts Intrinsic Excitability of Hippocampal Neurons through Phospho-Regulation of A-type K+ Channel Trafficking , 2011, The Journal of Neuroscience.

[101]  K. Mackie,et al.  Modulation of Ca2+ channels βγ G-protein py subunits , 1996, Nature.

[102]  William A. Catterall,et al.  Crystal structure of a voltage-gated sodium channel in two potentially inactivated states , 2012, Nature.

[103]  Ravi Iyengar,et al.  Cell Shape and Negative Links in Regulatory Motifs Together Control Spatial Information Flow in Signaling Networks , 2008, Cell.

[104]  M. de Curtis,et al.  Pharmacological and biophysical characterization of voltage-gated calcium currents in the endopiriform nucleus of the guinea pig. , 2001, Journal of neurophysiology.

[105]  S. Grillner,et al.  The Basal Ganglia Over 500 Million Years , 2016, Current Biology.

[106]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[107]  N. Spruston,et al.  Determinants of Voltage Attenuation in Neocortical Pyramidal Neuron Dendrites , 1998, The Journal of Neuroscience.

[108]  Rafal Bogacz,et al.  Computational Models Describing Possible Mechanisms for Generation of Excessive Beta Oscillations in Parkinson’s Disease , 2015, PLoS Comput. Biol..

[109]  F. Vidal,et al.  Selective effects of partial striatal 6‐OHDA lesions on information processing in the rat , 2005, The European journal of neuroscience.

[110]  A. Graybiel,et al.  Responses of tonically active neurons in the primate's striatum undergo systematic changes during behavioral sensorimotor conditioning , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[111]  John C. Rothwell,et al.  Pathophysiology of somatosensory abnormalities in Parkinson disease , 2013, Nature Reviews Neurology.

[112]  F. J. White,et al.  Repeated cocaine treatment decreases whole-cell calcium current in rat nucleus accumbens neurons. , 2002, The Journal of pharmacology and experimental therapeutics.

[113]  L. Mao,et al.  Integrated regulation of AMPA glutamate receptor phosphorylation in the striatum by dopamine and acetylcholine , 2017, Neuropharmacology.

[114]  J. González,et al.  Combined Treatment With Environmental Enrichment and (-)-Epigallocatechin-3-Gallate Ameliorates Learning Deficits and Hippocampal Alterations in a Mouse Model of Down Syndrome , 2016, eNeuro.

[115]  Zhuohua Zhang,et al.  Differential distribution of KChIPs mRNAs in adult mouse brain. , 2004, Brain research. Molecular brain research.

[116]  M. Atzori,et al.  Voltage-Dependent Block of N-Methyl-D-aspartate Receptors by Dopamine D1 Receptor Ligands , 2006, Molecular Pharmacology.

[117]  Charles J. Wilson GABAergic inhibition in the neostriatum. , 2007, Progress in brain research.

[118]  Daniel Durstewitz,et al.  Dopamine modulation , 2008, Scholarpedia.

[119]  F. Woodward Hopf,et al.  The small‐conductance calcium‐activated potassium channel is a key modulator of firing and long‐term depression in the dorsal striatum , 2010, The European journal of neuroscience.

[120]  Saori C. Tanaka,et al.  Serotonin Differentially Regulates Short- and Long-Term Prediction of Rewards in the Ventral and Dorsal Striatum , 2007, PloS one.

[121]  Stefan Rotter,et al.  The Role of Inhibition in Generating and Controlling Parkinson’s Disease Oscillations in the Basal Ganglia , 2011, Front. Syst. Neurosci..

[122]  Yan Dong,et al.  Dopamine Modulates Inwardly Rectifying Potassium Currents in Medial Prefrontal Cortex Pyramidal Neurons , 2004, The Journal of Neuroscience.

[123]  Elizabeth Nieto Mendoza,et al.  Dopaminergic Modulation of Striatal Inhibitory Transmission and Long-Term Plasticity , 2015, Neural plasticity.

[124]  B. MacVicar,et al.  D1 Receptors Physically Interact with N-Type Calcium Channels to Regulate Channel Distribution and Dendritic Calcium Entry , 2008, Neuron.

[125]  Robert W Gereau,et al.  Dopamine-Dependent Compensation Maintains Motor Behavior in Mice with Developmental Ablation of Dopaminergic Neurons , 2013, The Journal of Neuroscience.

[126]  U. Misgeld,et al.  Retrograde signaling changes the venue of postsynaptic inhibition in rat substantia nigra , 2003, Neuroscience.

[127]  D. Johnston,et al.  Downregulation of Transient K+ Channels in Dendrites of Hippocampal CA1 Pyramidal Neurons by Activation of PKA and PKC , 1998, The Journal of Neuroscience.

[128]  Alon Korngreen,et al.  Dopaminergic Modulation of Synaptic Integration and Firing Patterns in the Rat Entopeduncular Nucleus , 2017, The Journal of Neuroscience.

[129]  B. Rudy,et al.  Slow inactivation of the sodium conductance in squid giant axons. Pronase resistance. , 1978, The Journal of physiology.

[130]  Anatol C. Kreitzer,et al.  Striatal Cholinergic Interneurons Drive GABA Release from Dopamine Terminals , 2014, Neuron.

[131]  Richard D Emes,et al.  Synaptic scaffold evolution generated components of vertebrate cognitive complexity , 2012, Nature Neuroscience.

[132]  D. Surmeier,et al.  Kv4.2 mRNA Abundance and A-Type K+ Current Amplitude Are Linearly Related in Basal Ganglia and Basal Forebrain Neurons , 2000, The Journal of Neuroscience.

[133]  A. Benabid,et al.  Effect of microiontophoretic application of dopamine on subthalamic nucleus neuronal activity in normal rats and in rats with unilateral lesion of the nigrostriatal pathway , 2001, The European journal of neuroscience.

[134]  D. Surmeier,et al.  Neuromodulation of Na+ Channel Slow Inactivation via cAMP-Dependent Protein Kinase and Protein Kinase C , 2006, Neuron.

[135]  Robert C. Cannon,et al.  LEMS: a language for expressing complex biological models in concise and hierarchical form and its use in underpinning NeuroML 2 , 2014, Front. Neuroinform..

[136]  J. Bargas,et al.  Cellular and molecular characterization of Ca2+ currents in acutely isolated, adult rat neostriatal neurons , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[137]  O. Hikosaka,et al.  Lateral habenula as a source of negative reward signals in dopamine neurons , 2007, Nature.

[138]  Jonathan E Rubin,et al.  Pallidostriatal Projections Promote β Oscillations in a Dopamine-Depleted Biophysical Network Model , 2016, The Journal of Neuroscience.

[139]  D. O'Boyle,et al.  Discrimination of bilateral differences in the loci of tactile stimulation is impaired in subjects with Parkinson's disease , 2003, Clinical anatomy.

[140]  Adam Ponzi,et al.  Sequentially Switching Cell Assemblies in Random Inhibitory Networks of Spiking Neurons in the Striatum , 2010, The Journal of Neuroscience.

[141]  栁下 祥 A critical time window for dopamine actions on the structural plasticity of dendritic spines , 2016 .

[142]  I. M. Stanford,et al.  Dopamine D2 receptor mediated presynaptic inhibition of striatopallidal GABAA IPSCs in vitro , 2001, Neuropharmacology.

[143]  Arvind Kumar,et al.  Homologous Basal Ganglia Network Models in Physiological and Parkinsonian Conditions , 2017, Front. Comput. Neurosci..

[144]  M. Häusser,et al.  Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patch‐clamp recordings , 2001, The Journal of physiology.

[145]  P. Calabresi,et al.  Activation of D2-Like Dopamine Receptors Reduces Synaptic Inputs to Striatal Cholinergic Interneurons , 2000, The Journal of Neuroscience.

[146]  N. Mercuri,et al.  Actions of cocaine on rat dopaminergic neurones in vitro , 1990, British journal of pharmacology.

[147]  J. Wickens Synaptic plasticity in the basal ganglia , 2009, Behavioural Brain Research.

[148]  Arvind Kumar,et al.  Significance of Input Correlations in Striatal Function , 2011, PLoS Comput. Biol..

[149]  Henrike Planert,et al.  Membrane Properties of Striatal Direct and Indirect Pathway Neurons in Mouse and Rat Slices and Their Modulation by Dopamine , 2013, PloS one.

[150]  Wenting Wang,et al.  Differential dopaminergic regulation of inwardly rectifying potassium channel mediated subthreshold dynamics in striatal medium spiny neurons , 2016, Neuropharmacology.

[151]  Yousheng Shu,et al.  Distinct contributions of Nav1.6 and Nav1.2 in action potential initiation and backpropagation , 2009, Nature Neuroscience.

[152]  J. Deniau,et al.  Disinhibition as a basic process in the expression of striatal functions , 1990, Trends in Neurosciences.

[153]  Atsushi Nambu,et al.  Mechanism of parkinsonian neuronal oscillations in the primate basal ganglia: some considerations based on our recent work , 2014, Front. Syst. Neurosci..

[154]  P. Greengard,et al.  Protein phosphatase 1 modulation of neostriatal AMPA channels: regulation by DARPP–32 and spinophilin , 1999, Nature Neuroscience.

[155]  J. Cadet,et al.  Long-term behavioral and biochemical effects of 6-hydroxydopamine injections in rat caudate-putamen , 1991, Brain Research Bulletin.

[156]  P. Greengard,et al.  Regulation of Phosphorylation of the GluR1 AMPA Receptor in the Neostriatum by Dopamine and Psychostimulants In Vivo , 2000, The Journal of Neuroscience.

[157]  P. Greengard,et al.  Dopamine and cAMP-Regulated Phosphoprotein 32 kDa Controls Both Striatal Long-Term Depression and Long-Term Potentiation, Opposing Forms of Synaptic Plasticity , 2000, The Journal of Neuroscience.

[158]  M. Umemiya,et al.  Dopaminergic modulation of excitatory postsynaptic currents in rat neostriatal neurons. , 1997, Journal of neurophysiology.

[159]  R. Duvoisin Cholinergic-anticholinergic antagonism in parkinsonism. , 1967, Archives of neurology.

[160]  A. Gibb,et al.  Dopamine D1 receptor inhibition of NMDA receptor currents mediated by tyrosine kinase-dependent receptor trafficking in neonatal rat striatum , 2008, The Journal of physiology.

[161]  Presynaptic D1 dopamine receptors facilitate glutamatergic neurotransmission in the rat globus pallidus , 2007, Neuroscience Letters.

[162]  Sten Grillner,et al.  Independent circuits in the basal ganglia for the evaluation and selection of actions , 2013, Proceedings of the National Academy of Sciences.

[163]  Kenji F. Tanaka,et al.  Functional Connectome of the Striatal Medium Spiny Neuron , 2011, The Journal of Neuroscience.

[164]  Kitai St,et al.  Cholinergic and dopaminergic modulation of potassium conductances in neostriatal neurons. , 1993 .

[165]  D. Surmeier,et al.  D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons , 2007, Trends in Neurosciences.

[166]  J. Schwarz,et al.  The effect of temperature on Na currents in rat myelinated nerve fibres , 1986, Pflügers Archiv European Journal of Physiology.

[167]  Suchitra Krishnan-Sarin,et al.  Human Tobacco Smokers in Early Abstinence Have Higher Levels of β2* Nicotinic Acetylcholine Receptors than Nonsmokers , 2006, The Journal of Neuroscience.

[168]  Jennifer A. Mangels,et al.  A Neostriatal Habit Learning System in Humans , 1996, Science.

[169]  J. Vincent,et al.  Dopamine D1 receptor modulates the voltage‐gated sodium current in rat striatal neurones through a protein kinase A. , 1995, The Journal of physiology.

[170]  Mark D. Humphries,et al.  Dopamine-modulated dynamic cell assemblies generated by the GABAergic striatal microcircuit , 2009, Neural Networks.

[171]  C. Patrick,et al.  Role of Serotonin and Dopamine System Interactions in the Neurobiology of Impulsive Aggression and its Comorbidity with other Clinical Disorders. , 2008, Aggression and violent behavior.

[172]  S. Gils,et al.  Sparse pallidal connections shape synchrony in a network model of the basal ganglia , 2017, The European journal of neuroscience.

[173]  A. Graybiel,et al.  Role of [corrected] nigrostriatal dopamine system in learning to perform sequential motor tasks in a predictive manner. , 1999, Journal of neurophysiology.

[174]  Nao Chuhma,et al.  Dopamine Neurons Control Striatal Cholinergic Neurons via Regionally Heterogeneous Dopamine and Glutamate Signaling , 2014, Neuron.

[175]  Yan Dong,et al.  Dopamine D1-Class Receptors Selectively Modulate a Slowly Inactivating Potassium Current in Rat Medial Prefrontal Cortex Pyramidal Neurons , 2003, The Journal of Neuroscience.

[176]  P. Greengard,et al.  Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons , 1995, Neuron.

[177]  Zayd M. Khaliq,et al.  Dopamine Inhibition Differentially Controls Excitability of Substantia Nigra Dopamine Neuron Subpopulations through T-Type Calcium Channels , 2017, The Journal of Neuroscience.

[178]  J. Bargas,et al.  D2 Dopamine Receptors in Striatal Medium Spiny Neurons Reduce L-Type Ca2+ Currents and Excitability via a Novel PLCβ1–IP3–Calcineurin-Signaling Cascade , 2000, The Journal of Neuroscience.

[179]  Olivia Eriksson,et al.  Sensing Positive versus Negative Reward Signals through Adenylyl Cyclase-Coupled GPCRs in Direct and Indirect Pathway Striatal Medium Spiny Neurons , 2015, The Journal of Neuroscience.

[180]  Jun B. Ding,et al.  Cholinergic modulation of synaptic integration and dendritic excitability in the striatum , 2011, Current Opinion in Neurobiology.

[181]  C. Capper-Loup,et al.  Locomotor velocity and striatal adaptive gene expression changes of the direct and indirect pathways in Parkinsonian rats. , 2013, Journal of Parkinson's disease.

[182]  William A Catterall,et al.  Transmitter Modulation of Slow, Activity-Dependent Alterations in Sodium Channel Availability Endows Neurons with a Novel Form of Cellular Plasticity , 2003, Neuron.

[183]  D. Grandy,et al.  Vesicular Dopamine Release Elicits an Inhibitory Postsynaptic Current in Midbrain Dopamine Neurons , 2004, Neuron.

[184]  D. Hansel,et al.  Competition between Feedback Loops Underlies Normal and Pathological Dynamics in the Basal Ganglia , 2022 .

[185]  Bo Li,et al.  A basal ganglia circuit for evaluating action outcomes , 2016, Nature.

[186]  Simon Hong,et al.  The Globus Pallidus Sends Reward-Related Signals to the Lateral Habenula , 2008, Neuron.

[187]  K. Deisseroth,et al.  Striatal Dopamine Release Is Triggered by Synchronized Activity in Cholinergic Interneurons , 2012, Neuron.

[188]  Jovana J. Belić,et al.  Interplay between periodic stimulation and GABAergic inhibition in striatal network oscillations , 2016, bioRxiv.

[189]  A. Graybiel Correspondence between the Dopamine islands and striosomes of the mammalian striatum , 1984, Neuroscience.

[190]  J M Bekkers,et al.  Cable properties of cultured hippocampal neurons determined from sucrose-evoked miniature EPSCs. , 1996, Journal of neurophysiology.

[191]  E. Vaadia,et al.  Coincident but Distinct Messages of Midbrain Dopamine and Striatal Tonically Active Neurons , 2004, Neuron.

[192]  C. Hammond,et al.  Excitatory effect of iontophoretically applied dopamine on identified neurons of the rat subthalamic nucleus , 1986, Brain Research.

[193]  Mark D. Humphries,et al.  Transient and steady-state selection in the striatal microcircuit , 2014, Front. Comput. Neurosci..

[194]  Joshua L. Plotkin,et al.  Synaptically driven state transitions in distal dendrites of striatal spiny neurons , 2011, Nature Neuroscience.

[195]  Simone Santini,et al.  The cell-centered database , 2007, Neuroinformatics.

[196]  H. C. Cromwell,et al.  Neuromodulatory actions of dopamine on synaptically‐evoked neostriatal responses in slices , 1996 .

[197]  Steven W. Johnson,et al.  Pharmacological identification of inward current evoked by dopamine in rat subthalamic neurons in vitro , 2002, Neuropharmacology.

[198]  X. Zhuang,et al.  Adenylyl Cyclase Type 5 Contributes to Corticostriatal Plasticity and Striatum-Dependent Learning , 2009, The Journal of Neuroscience.

[199]  N. Maurice,et al.  Involvement of Striatal Cholinergic Interneurons and M1 and M4 Muscarinic Receptors in Motor Symptoms of Parkinson's Disease , 2016, The Journal of Neuroscience.

[200]  Simon Hong Dopamine system: manager of neural pathways , 2013, Front. Hum. Neurosci..

[201]  S. Johnson,et al.  Presynaptic dopamine D2 and muscarine M3 receptors inhibit excitatory and inhibitory transmission to rat subthalamic neurones in vitro , 2000, The Journal of physiology.

[202]  R. Huganir,et al.  Targeting of PKA to Glutamate Receptors through a MAGUK-AKAP Complex , 2000, Neuron.

[203]  Jeanette Kotaleski,et al.  Role of DARPP-32 and ARPP-21 in the Emergence of Temporal Constraints on Striatal Calcium and Dopamine Integration , 2016, PLoS Comput. Biol..

[204]  A. Aertsen,et al.  Activity Dynamics and Signal Representation in Striatal Network Model with Distance-dependent Connectivity , 2016, bioRxiv.

[205]  Dopamine and Serotonin-Induced Modulation of GABAergic and Glutamatergic Transmission in the Striatum and Basal Forebrain , 2017, Front. Neuroanat..

[206]  J. Girault,et al.  Striatal neurones have a specific ability to respond to phasic dopamine release , 2013, The Journal of physiology.

[207]  G. Silberberg,et al.  Dopamine Depletion Impairs Bilateral Sensory Processing in the Striatum in a Pathway-Dependent Manner , 2017, Neuron.

[208]  E. Vaadia,et al.  Firing Patterns and Correlations of Spontaneous Discharge of Pallidal Neurons in the Normal and the Tremulous 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Vervet Model of Parkinsonism , 2000, The Journal of Neuroscience.

[209]  Paul W. Tillberg,et al.  Striosome–dendron bouquets highlight a unique striatonigral circuit targeting dopamine-containing neurons , 2016, Proceedings of the National Academy of Sciences.

[210]  H. C. Cromwell,et al.  Modulatory Actions of Dopamine on NMDA Receptor-Mediated Responses Are Reduced in D1A-Deficient Mutant Mice , 1996, The Journal of Neuroscience.

[211]  Yousheng Shu,et al.  Dopaminergic modulation of axonal potassium channels and action potential waveform in pyramidal neurons of prefrontal cortex , 2013, The Journal of physiology.

[212]  Luis Carrillo-Reid,et al.  The Balance of Striatal Feedback Transmission Is Disrupted in a Model of Parkinsonism , 2013, The Journal of Neuroscience.

[213]  G. Silberberg,et al.  Multisensory Integration in the Mouse Striatum , 2014, Neuron.

[214]  H. Bergman,et al.  Pathological synchronization in Parkinson's disease: networks, models and treatments , 2007, Trends in Neurosciences.

[215]  J. Aceves,et al.  D2 receptor-mediated inhibition of GABA release by endogenous dopamine in the rat globus pallidus , 1997, Neuroscience Letters.

[216]  A. Graybiel,et al.  Temporal and spatial characteristics of tonically active neurons of the primate's striatum. , 1995, Journal of neurophysiology.

[217]  Huanmian Chen,et al.  Recurrent Inhibitory Network among Striatal Cholinergic Interneurons , 2008, The Journal of Neuroscience.

[218]  Bernardo L. Sabatini,et al.  Mechanisms and functions of GABA co-release , 2016, Nature Reviews Neuroscience.

[219]  W. Catterall,et al.  Dopamine modulation of neuronal Na+ channels requires binding of A kinase-anchoring protein 15and PKA by a modified leucine zipper motif , 2007, Proceedings of the National Academy of Sciences.

[220]  Vincenzo Crunelli,et al.  The ‘window’ T‐type calcium current in brain dynamics of different behavioural states , 2005, The Journal of physiology.

[221]  R. Huganir,et al.  Control of GluR1 AMPA Receptor Function by cAMP-Dependent Protein Kinase , 2000, The Journal of Neuroscience.

[222]  Karl Deisseroth,et al.  Striatal Cholinergic Interneurons Control Motor Behavior and Basal Ganglia Function in Experimental Parkinsonism. , 2015, Cell reports.

[223]  J. Tepper,et al.  Glutamatergic Signaling by Mesolimbic Dopamine Neurons in the Nucleus Accumbens , 2010, The Journal of Neuroscience.

[224]  Henry H. Yin,et al.  Dopaminergic Control of Corticostriatal Long-Term Synaptic Depression in Medium Spiny Neurons Is Mediated by Cholinergic Interneurons , 2006, Neuron.

[225]  C. Chapman,et al.  Dopaminergic enhancement of excitatory synaptic transmission in layer II entorhinal neurons is dependent on D1-like receptor-mediated signaling , 2014, Neuroscience.

[226]  T. Neild,et al.  Membrane properties. , 1979, British medical bulletin.

[227]  J. Bargas,et al.  Dopamine facilitates striatal EPSPs through an L‐type Ca2+ conductance , 1997, Neuroreport.

[228]  W. Catterall,et al.  THE CRYSTAL STRUCTURE OF A VOLTAGE-GATED SODIUM CHANNEL , 2011, Nature.

[229]  Kristen K. Ade,et al.  Dopamine Modulation of GABA Tonic Conductance in Striatal Output Neurons , 2009, The Journal of Neuroscience.

[230]  P. Calabresi,et al.  A convergent model for cognitive dysfunctions in Parkinson's disease: the critical dopamine–acetylcholine synaptic balance , 2006, The Lancet Neurology.

[231]  Jérôme Baufreton,et al.  Synaptic release of dopamine in the subthalamic nucleus , 2004, The European journal of neuroscience.

[232]  D. Watanabe,et al.  Impairment of reward-related learning by cholinergic cell ablation in the striatum , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[233]  Je-Hyun Baek,et al.  Reciprocal Changes in Phosphorylation and Methylation of Mammalian Brain Sodium Channels in Response to Seizures* , 2014, The Journal of Biological Chemistry.

[234]  D. Johnston,et al.  K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons , 1997, Nature.

[235]  H. Yin,et al.  Genetic Deletion of A2A Adenosine Receptors in the Striatum Selectively Impairs Habit Formation , 2009, The Journal of Neuroscience.

[236]  B. Sabatini,et al.  Dopaminergic Modulation of Synaptic Transmission in Cortex and Striatum , 2012, Neuron.

[237]  David G Standaert,et al.  Dopamine D1 Activation Potentiates Striatal NMDA Receptors by Tyrosine Phosphorylation-Dependent Subunit Trafficking , 2006, The Journal of Neuroscience.

[238]  L. Raymond,et al.  D1 Dopamine Receptor‐Induced Cyclic AMP‐Dependent Protein Kinase Phosphorylation and Potentiation of Striatal Glutamate Receptors , 1999, Journal of neurochemistry.

[239]  Hitoshi Kita,et al.  Subthalamo‐pallidal interactions underlying parkinsonian neuronal oscillations in the primate basal ganglia , 2011, The European journal of neuroscience.