Stokes parameters in the unfolding of an optical vortex through a birefringent crystal.

Following our earlier work [F. Flossmann et al., Phys. Rev. Lett. 95 253901 (2005)], we describe the fine polarization structure of a beam containing optical vortices propagating through a birefringent crystal, both experimentally and theoretically.We emphasize here the zero surfaces of the Stokes parameters in three-dimensional space, two transverse dimensions and the third corresponding to optical path length in the crystal. We find that the complicated network of polarization singularities reported earlier -lines of circular polarization (C lines) and surfaces of linear polarization (L surfaces) - can be understood naturally in terms of the zeros of the Stokes parameters.

[1]  Alexander V. Volyar,et al.  The fine structure of singular beams in crystals: colours and polarization , 2004 .

[2]  M. Padgett,et al.  Topology of optical vortex lines formed by the interference of three, four, and five plane waves. , 2006, Optics express.

[3]  Erez Hasman,et al.  Manipulation of the Pancharatnam phase in vectorial vortices. , 2006, Optics express.

[4]  O V Angelsky,et al.  Stokes singularity relations. , 2002, Optics letters.

[5]  Mark R. Dennis,et al.  Polarization singularities in paraxial vector fields: morphology and statistics , 2002 .

[6]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[7]  Mark R. Dennis,et al.  Polarization singularities from unfolding an optical vortex through a birefringent crystal. , 2005, Physical review letters.

[8]  G Leuchs,et al.  Sharper focus for a radially polarized light beam. , 2003, Physical review letters.

[9]  Mark R. Dennis,et al.  Phase singularities in isotropic random waves , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[10]  Wieslaw Krolikowski,et al.  Generation of single-charge optical vortices with an uniaxial crystal. , 2006, Optics express.

[11]  U. T. Schwarz,et al.  Propagation dynamics of optical vortices in Laguerre–Gaussian beams , 2005 .

[12]  M. Berry,et al.  The optical singularities of birefringent dichroic chiral crystals , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[13]  M. R. Dennis Braided nodal lines in wave superpositions , 2003 .

[14]  John F Nye,et al.  Lines of circular polarization in electromagnetic wave fields , 1983, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.