Numerical simulations of time-resolved quantum electronics

Abstract Numerical simulation has become a major tool in quantum electronics both for fundamental and applied purposes. While for a long time those simulations focused on stationary properties (e.g. DC currents), the recent experimental trend toward GHz frequencies and beyond has triggered a new interest for handling time-dependent perturbations. As the experimental frequencies get higher, it becomes possible to conceive experiments which are both time-resolved and fast enough to probe the internal quantum dynamics of the system. This paper discusses the technical aspects–mathematical and numerical–associated with the numerical simulations of such a setup in the time domain (i.e. beyond the single-frequency AC limit). After a short review of the state of the art, we develop a theoretical framework for the calculation of time-resolved observables in a general multiterminal system subject to an arbitrary time-dependent perturbation (oscillating electrostatic gates, voltage pulses, time-varying magnetic fields, etc.) The approach is mathematically equivalent to (i) the time-dependent scattering formalism, (ii) the time-resolved non-equilibrium Green’s function (NEGF) formalism and (iii) the partition-free approach. The central object of our theory is a wave function that obeys a simple Schrodinger equation with an additional source term that accounts for the electrons injected from the electrodes. The time-resolved observables (current, density, etc.) and the (inelastic) scattering matrix are simply expressed in terms of this wave function. We use our approach to develop a numerical technique for simulating time-resolved quantum transport. We find that the use of this wave function is advantageous for numerical simulations resulting in a speed up of many orders of magnitude with respect to the direct integration of NEGF equations. Our technique allows one to simulate realistic situations beyond simple models, a subject that was until now beyond the simulation capabilities of available approaches.

[1]  Time-dependent approach to electron pumping in open quantum systems , 2007, cond-mat/0701279.

[2]  Meir,et al.  Time-dependent transport in interacting and noninteracting resonant-tunneling systems. , 1994, Physical review. B, Condensed matter.

[3]  Thomas,et al.  Admittance of small conductors. , 1993, Physical review letters.

[4]  Stefano Sanvito,et al.  Algorithm for the construction of self-energies for electronic transport calculations based on singularity elimination and singular value decomposition , 2008 .

[5]  G. Fève,et al.  An On-Demand Coherent Single-Electron Source , 2007, Science.

[6]  J. Rammer,et al.  Quantum Field Theory of Non-equilibrium States , 2007 .

[7]  Zhaohui Zhong,et al.  Terahertz time-domain measurement of ballistic electron resonance in a single-walled carbon nanotube. , 2008, Nature nanotechnology.

[8]  Y. Blanter,et al.  Shot noise in mesoscopic conductors , 1999, cond-mat/9910158.

[9]  B. Dunietz,et al.  Modeling time-dependent current through electronic open channels using a mixed time-frequency solution to the electronic equations of motion , 2008 .

[10]  M. Moskalets Scattering Matrix Approach to Non-Stationary Quantum Transport , 2011 .

[11]  T. A. Niehaus,et al.  An efficient method for quantum transport simulations in the time domain , 2011, 1101.5929.

[12]  Andreas D. Wieck,et al.  Electrons surfing on a sound wave as a platform for quantum optics with flying electrons , 2011, Nature.

[13]  E. Bettelheim,et al.  Nonlinear quantum shock waves in fractional quantum Hall edge states. , 2006, Physical review letters.

[14]  J. Fabian,et al.  Charge pumping by magnetization dynamics in magnetic and semimagnetic tunnel junctions with interfacial Rashba or bulk extrinsic spin-orbit coupling , 2011, 1110.6781.

[15]  Daniel S. Fisher,et al.  Relation between conductivity and transmission matrix , 1981 .

[16]  Baigeng Wang,et al.  Current plateaus of nonadiabatic charge pump: Multiphoton assisted processes , 2003 .

[17]  Eric Darve,et al.  Computing entries of the inverse of a sparse matrix using the FIND algorithm , 2008, J. Comput. Phys..

[18]  Jian Wang,et al.  Time-dependent quantum transport far from equilibrium : An exact nonlinear response theory , 2006 .

[19]  A. Mirlin,et al.  Dynamics of waves in one-dimensional electron systems: Density oscillations driven by population inversion , 2012, 1209.1079.

[20]  Xavier Waintal,et al.  Knitting algorithm for calculating Green functions in quantum systems , 2007, 0711.3413.

[21]  이화영 X , 1960, Chinese Plants Names Index 2000-2009.

[22]  Kenta Watanabe,et al.  Electrical control of a solid-state flying qubit. , 2012, Nature nanotechnology.

[23]  Meir,et al.  Landauer formula for the current through an interacting electron region. , 1992, Physical review letters.

[24]  P. Bordone,et al.  Quantum logic gates based on coherent electron transport in quantum wires. , 2000, Physical review letters.

[25]  L. Delves,et al.  Computational methods for integral equations: Frontmatter , 1985 .

[26]  D. Glattli,et al.  Experimental test of the high-frequency quantum shot noise theory in a quantum point contact. , 2007, Physical review letters.

[27]  Pastawski,et al.  Classical and quantum transport from generalized Landauer-Büttiker equations. , 1991, Physical review. B, Condensed matter.

[28]  Time-dependent transport through a mesoscopic structure. , 1993, Physical review. B, Condensed matter.

[29]  Electron counting statistics and coherent states of electric current , 1996, cond-mat/9607137.

[30]  M. Wimmer Quantum transport in nanostructures: From computational concepts to spintronics in graphene and magnetic tunnel junctions , 2009 .

[31]  M. Büttiker Time-dependent current partition in mesoscopic conductors , 1995 .

[32]  E. Bocquillon Electron quantum optics in quantum Hall edge channels , 2012 .

[33]  A. Rubio,et al.  Time-dependent quantum transport: A practical scheme using density functional theory , 2005, cond-mat/0502391.

[34]  Gianluca Stefanucci,et al.  Time-dependent partition-free approach in resonant tunneling systems , 2003, cond-mat/0310084.

[35]  A. Croy,et al.  Propagation scheme for nonequilibrium dynamics of electron transport in nanoscale devices , 2009, 0908.2936.

[36]  D. Glattli,et al.  Integer and fractional charge Lorentzian voltage pulses analyzed in the framework of photon-assisted shot noise , 2012, 1212.3921.

[37]  I. Klich,et al.  Minimal excitation states of electrons in one-dimensional wires. , 2006, Physical review letters.

[38]  Jian Wang,et al.  Time-dependent quantum transport: Direct analysis in the time domain , 2005 .

[39]  H. Smith,et al.  Quantum field-theoretical methods in transport theory of metals , 1986 .

[40]  Diana Adler,et al.  Electronic Transport In Mesoscopic Systems , 2016 .

[41]  D. Glattli,et al.  Experimental determination of the statistics of photons emitted by a tunnel junction. , 2010, Physical review letters.

[42]  D. Ferry,et al.  Quantum transport beyond DC , 2013, Journal of Computational Electronics.

[43]  X. Waintal,et al.  Numerical toolkit for electronic quantum transport at finite frequency , 2012, 1211.2768.

[44]  K. Likharev,et al.  Dynamics of Josephson Junctions and Circuits , 1986 .

[45]  E. Gross,et al.  The role of bound states in time-dependent quantum transport , 2008, 0802.2516.

[46]  M. Buttiker,et al.  Current noise spectrum of a single particle emitter: theory and experiment , 2011, 1111.3136.

[47]  Jian Wang Time-dependent quantum transport theory from non-equilibrium Green’s function approach , 2013 .

[48]  Guanhua Chen,et al.  Time-dependent quantum transport: an efficient method based on Liouville-von-Neumann equation for single-electron density matrix. , 2012, The Journal of chemical physics.

[49]  G. Liang,et al.  Time-dependent quantum transport and power-law decay of the transient current in a nano-relay and nano-oscillator , 2011, 1104.3977.

[50]  J. P. Gordon,et al.  Multiphoton Process Observed in the Interaction of Microwave Fields with the Tunneling between Superconductor Films , 1963 .

[51]  M. Konopka,et al.  Stroboscopic wave packet description of time-dependent currents through ring-shaped nanostructures , 2013, 1301.6664.

[52]  M. Wimmer,et al.  Kwant: a software package for quantum transport , 2013, 1309.2926.

[53]  Time-dependent transport : Time domain recursively solving NEGF technique , 2006 .

[54]  Pastawski Classical and quantum transport from generalized Landauer-Büttiker equations. II. Time-dependent resonant tunneling. , 1992, Physical review. B, Condensed matter.

[55]  J Gabelli,et al.  Violation of Kirchhoff's Laws for a Coherent RC Circuit , 2006, Science.

[56]  G. Fève,et al.  Electron quantum optics: partitioning electrons one by one. , 2012, Physical review letters.

[57]  M. Governale,et al.  A Josephson quantum electron pump , 2011, 1102.4207.

[58]  L. Glazman,et al.  Quantum ripples over a semiclassical shock. , 2012, Physical review letters.

[59]  Eric Darve,et al.  A hybrid method for the parallel computation of Green's functions , 2009, J. Comput. Phys..

[60]  M. Buttiker,et al.  Optimal pumping of orbital entanglement with single-particle emitters , 2012, 1201.1509.

[61]  Büttiker,et al.  Four-terminal phase-coherent conductance. , 1986, Physical review letters.

[62]  Thomas,et al.  Dynamic conductance and the scattering matrix of small conductors. , 1993, Physical review letters.

[63]  Scattering approach to parametric pumping , 1998, cond-mat/9808347.

[64]  D. Glattli,et al.  Quantum partition noise of photon-created electron-hole pairs. , 2002, Physical review letters.

[65]  G. Fève,et al.  Coherence and Indistinguishability of Single Electrons Emitted by Independent Sources , 2013, Science.

[66]  Michel Devoret,et al.  Single-Electron Pump Based on Charging Effects , 1992 .

[67]  C. H. W. Barnes,et al.  On-demand single-electron transfer between distant quantum dots , 2011, Nature.

[68]  G. Fève,et al.  Relaxation time of a chiral quantum R-L circuit. , 2007, Physical review letters.

[69]  D. Ritchie,et al.  Clock-controlled emission of single-electron wave packets in a solid-state circuit. , 2012, Physical review letters.

[70]  H. Wu,et al.  Thermal transport through a one-dimensional quantum spin-1/2 chain heterostructure: The role of three-site spin interaction , 2012 .

[71]  G. Stefanucci,et al.  Time-dependent transport in graphene nanoribbons , 2009, 0911.4431.

[72]  R. Godby,et al.  Stroboscopic wave-packet description of nonequilibrium many-electron problems. , 2008, Physical review letters.

[73]  Gianluca Stefanucci,et al.  Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction , 2013 .

[74]  C. Caroli,et al.  Direct calculation of the tunneling current , 1971 .

[75]  M. Cini,et al.  Time-dependent approach to electron transport through junctions: General theory and simple applications , 1980 .

[76]  Self-consistent ac quantum transport using nonequilibrium Green functions , 2010, 1003.2058.

[77]  G. Fève,et al.  Current correlations of an on-demand single-electron emitter , 2010 .

[78]  Chien-Liang Chen,et al.  Spin-charge conversion in a multiterminal Aharonov-Casher ring coupled to precessing ferromagnets: A charge-conserving Floquet nonequilibrium Green function approach , 2012, 1208.2275.

[79]  Markus Buttiker,et al.  Capacitance, admittance, and rectification properties of small conductors , 1993 .

[80]  Roderich Moessner,et al.  Floquet topological insulators , 2012, 1211.5623.

[81]  L. Keldysh Diagram technique for nonequilibrium processes , 1964 .