Nonclassical renin-angiotensin system and renal function.

The renin-angiotensin system (RAS) constitutes one of the most important hormonal systems in the physiological regulation of blood pressure through renal and nonrenal mechanisms. Indeed, dysregulation of the RAS is considered a major factor in the development of cardiovascular pathologies, including kidney injury, and blockade of this system by the inhibition of angiotensin converting enzyme (ACE) or blockade of the angiotensin type 1 receptor (AT1R) by selective antagonists constitutes an effective therapeutic regimen. It is now apparent with the identification of multiple components of the RAS within the kidney and other tissues that the system is actually composed of different angiotensin peptides with diverse biological actions mediated by distinct receptor subtypes. The classic RAS can be defined as the ACE-Ang II-AT1R axis that promotes vasoconstriction, water intake, sodium retention, and other mechanisms to maintain blood pressure, as well as increase oxidative stress, fibrosis, cellular growth, and inflammation in pathological conditions. In contrast, the nonclassical RAS composed primarily of the AngII/Ang III-AT2R pathway and the ACE2-Ang-(1-7)-AT7R axis generally opposes the actions of a stimulated Ang II-AT1R axis through an increase in nitric oxide and prostaglandins and mediates vasodilation, natriuresis, diuresis, and reduced oxidative stress. Moreover, increasing evidence suggests that these non-classical RAS components contribute to the therapeutic blockade of the classical system to reduce blood pressure and attenuate various indices of renal injury, as well as contribute to normal renal function.

[1]  Merlin C. Thomas,et al.  Angiotensin-converting enzyme 2 regulates renal atrial natriuretic peptide through angiotensin-(1-7). , 2012, Clinical science.

[2]  J. Schnermann,et al.  Synthesis and secretion of renin in mice with induced genetic mutations. , 2012, Kidney international.

[3]  X. Li,et al.  Evidence for a functional intracellular angiotensin system in the proximal tubule of the kidney. , 2012, American journal of physiology. Regulatory, integrative and comparative physiology.

[4]  S. Akhtar,et al.  Angiotensin‐(1‐7) inhibits epidermal growth factor receptor transactivation via a Mas receptor‐dependent pathway , 2012, British journal of pharmacology.

[5]  M. van den Heuvel,et al.  Urinary renin, but not angiotensinogen or aldosterone, reflects the renal renin–angiotensin–aldosterone system activity and the efficacy of renin–angiotensin–aldosterone system blockade in the kidney , 2011, Journal of hypertension.

[6]  Y. Chen,et al.  Angiotensin II Type II Receptor Deficiency Accelerates the Development of Nephropathy in Type I Diabetes via Oxidative Stress and ACE2 , 2011, Experimental diabetes research.

[7]  M. Chappell,et al.  Estrogen Receptor GPR30 Reduces Oxidative Stress and Proteinuria in the Salt-Sensitive Female mRen2.Lewis Rat , 2011, Hypertension.

[8]  B. O’Rourke,et al.  Identification and characterization of a functional mitochondrial angiotensin system , 2011, Proceedings of the National Academy of Sciences.

[9]  X. Li,et al.  New insights and perspectives on intrarenal renin-angiotensin system: Focus on intracrine/intracellular angiotensin II , 2011, Peptides.

[10]  D. Diz,et al.  Angiotensin-(1-7) Blockade Attenuates Captopril- or Hydralazine-induced Cardiovascular Protection in Spontaneously Hypertensive Rats Treated With NG-nitro-l-Arginine Methyl Ester , 2011, Journal of cardiovascular pharmacology.

[11]  J. Cook,et al.  Intrarenal transfer of an intracellular fluorescent fusion of angiotensin II selectively in proximal tubules increases blood pressure in rats and mice. , 2011, American journal of physiology. Renal physiology.

[12]  A. Hallberg,et al.  Non-peptide AT2-receptor agonists. , 2011, Current opinion in pharmacology.

[13]  T. Hussain,et al.  Role of the angiotensin II AT2 receptor in inflammation and oxidative stress: opposing effects in lean and obese Zucker rats. , 2011, American journal of physiology. Renal physiology.

[14]  H. Shaltout,et al.  Glucocorticoid-Induced Fetal Programming Alters the Functional Complement of Angiotensin Receptor Subtypes Within the Kidney , 2011, Hypertension.

[15]  H. Kobori,et al.  Intratubular renin-angiotensin system in hypertension. , 2011, Hypertension.

[16]  J. Penninger,et al.  Prevention of Angiotensin II–Mediated Renal Oxidative Stress, Inflammation, and Fibrosis by Angiotensin-Converting Enzyme 2 , 2011, Hypertension.

[17]  H. Siragy,et al.  Angiotensin AT2 Receptor Stimulation Inhibits Early Renal Inflammation in Renovascular Hypertension , 2011, Hypertension.

[18]  S. Fuller,et al.  Distinct distribution of GLUT4 and insulin regulated aminopeptidase in the mouse kidney , 2011, Regulatory Peptides.

[19]  H. Kobori,et al.  Reciprocal changes in renal ACE/ANG II and ACE2/ANG 1-7 are associated with enhanced collecting duct renin in Goldblatt hypertensive rats. , 2011, American journal of physiology. Renal physiology.

[20]  N. Alenina,et al.  Knockout of Angiotensin 1–7 Receptor Mas Worsens the Course of Two-Kidney, One-Clip Goldblatt Hypertension: Roles of Nitric Oxide Deficiency and Enhanced Vascular Responsiveness to Angiotensin II , 2010, Kidney and Blood Pressure Research.

[21]  S. Bachmann,et al.  Intrarenal Renin Angiotensin System Revisited , 2010, The Journal of Biological Chemistry.

[22]  R. Santos,et al.  ACE2-angiotensin-(1-7)-Mas axis in renal ischaemia/reperfusion injury in rats. , 2010, Clinical science.

[23]  T. Hussain,et al.  Inhibition of NAD(P)H oxidase potentiates AT2 receptor agonist-induced natriuresis in Sprague-Dawley rats. , 2010, American journal of physiology. Renal physiology.

[24]  Tatsuo Yamamoto,et al.  Angiotensin (1-7) Receptor Antagonism Equalizes Angiotensin II-Induced Hypertension in Male and Female Spontaneously Hypertensive Rats , 2010, Hypertension.

[25]  L. Tang,et al.  Nuclear angiotensin-(1-7) receptor is functionally coupled to the formation of nitric oxide. , 2010, American journal of physiology. Renal physiology.

[26]  J. Penninger,et al.  Angiotensin-Converting Enzyme 2 Suppresses Pathological Hypertrophy, Myocardial Fibrosis, and Cardiac Dysfunction , 2010, Circulation.

[27]  S. Akhtar,et al.  Angiotensin-(1-7) prevents diabetes-induced attenuation in PPAR-gamma and catalase activities. , 2010, European journal of pharmacology.

[28]  M. Chappell,et al.  Influence of estrogen depletion and salt loading on renal angiotensinogen expression in the mRen(2).Lewis strain. , 2010, American journal of physiology. Renal physiology.

[29]  R. Harris,et al.  Macula densa sensing and signaling mechanisms of renin release. , 2010, Journal of the American Society of Nephrology : JASN.

[30]  M. Raizada,et al.  Targeting the Vasoprotective Axis of the Renin-Angiotensin System: A Novel Strategic Approach to Pulmonary Hypertensive Therapy , 2010, Current hypertension reports.

[31]  L. Carey,et al.  Prenatal betamethasone exposure alters renal function in immature sheep: sex differences in effects. , 2010, American journal of physiology. Regulatory, integrative and comparative physiology.

[32]  K. Khazaie,et al.  Cathepsin B is not the processing enzyme for mouse prorenin. , 2010, American journal of physiology. Regulatory, integrative and comparative physiology.

[33]  T. Reudelhuber Prorenin, Renin, and their receptor: moving targets. , 2010, Hypertension.

[34]  N. Moniwa,et al.  Chymase-Dependent Generation of Angiotensin II from Angiotensin-(1-12) in Human Atrial Tissue , 2010, PloS one.

[35]  T. Unger,et al.  The angiotensin AT2 receptor in inflammation. , 2010, Drug news & perspectives.

[36]  J. Han,et al.  Angiotensin type 2 receptor actions contribute to angiotensin type 1 receptor blocker effects on kidney fibrosis. , 2010, American journal of physiology. Renal physiology.

[37]  W. Border,et al.  Infusion of angiotensin-(1-7) reduces glomerulosclerosis through counteracting angiotensin II in experimental glomerulonephritis. , 2010, American journal of physiology. Renal physiology.

[38]  R. Benndorf,et al.  The angiotensin II type 2 receptor in renal disease , 2010, Journal of the renin-angiotensin-aldosterone system : JRAAS.

[39]  B. Roques,et al.  Intrarenal Aminopeptidase N Inhibition Restores Defective Angiotensin II Type 2–Mediated Natriuresis in Spontaneously Hypertensive Rats , 2010, Hypertension.

[40]  A. Hallberg,et al.  Stimulation of angiotensin AT2 receptors by the non‐peptide agonist, Compound 21, evokes vasodepressor effects in conscious spontaneously hypertensive rats , 2010, British journal of pharmacology.

[41]  H. Kobori,et al.  Increased Urinary Angiotensinogen Is Precedent to Increased Urinary Albumin in Patients With Type 1 Diabetes , 2009, The American journal of the medical sciences.

[42]  T. Unger,et al.  The evolving story of the RAAS in hypertension, diabetes and CV disease – moving from macrovascular to microvascular targets , 2009, Fundamental & clinical pharmacology.

[43]  D. Diz,et al.  Angiotensin-(1-7)–Angiotensin-Converting Enzyme 2 Attenuates Reactive Oxygen Species Formation to Angiotensin II Within the Cell Nucleus , 2009, Hypertension.

[44]  J. Penninger,et al.  Human Recombinant ACE2 Reduces the Progression of Diabetic Nephropathy , 2009, Diabetes.

[45]  S. Santos,et al.  Genetic deletion of the angiotensin-(1-7) receptor Mas leads to glomerular hyperfiltration and microalbuminuria. , 2009, Kidney international.

[46]  F. Thaiss,et al.  Angiotensin II type 2 receptor deficiency aggravates renal injury and reduces survival in chronic kidney disease in mice. , 2009, Kidney international.

[47]  M. Janech,et al.  Angiotensin I Is Largely Converted to Angiotensin (1-7) and Angiotensin (2-10) by Isolated Rat Glomeruli , 2009, Hypertension.

[48]  J. Sowers,et al.  Differential regulation of angiotensin-(1-12) in plasma and cardiac tissue in response to bilateral nephrectomy. , 2009, American journal of physiology. Heart and circulatory physiology.

[49]  P. Vanderheyden,et al.  IRAP and AT1 receptor mediated effects of angiotensin IV , 2009, Journal of internal medicine.

[50]  H. Shaltout,et al.  Nuclear angiotensin II type 2 (AT2) receptors are functionally linked to nitric oxide production. , 2009, American journal of physiology. Renal physiology.

[51]  H. Kobori,et al.  Urinary Angiotensinogen as a Novel Biomarker of the Intrarenal Renin-Angiotensin System Status in Hypertensive Patients , 2009, Hypertension.

[52]  R. Carey,et al.  Intrarenal Angiotensin III Infusion Induces Natriuresis and Angiotensin Type 2 Receptor Translocation in Wistar-Kyoto but not in Spontaneously Hypertensive Rats , 2009, Hypertension.

[53]  L. Carey,et al.  Gender differences in the effects of antenatal betamethasone exposure on renal function in adult sheep. , 2009, American journal of physiology. Regulatory, integrative and comparative physiology.

[54]  J. Penninger,et al.  Decreased glomerular and tubular expression of ACE2 in patients with type 2 diabetes and kidney disease. , 2008, Kidney international.

[55]  M. Chappell,et al.  Sex differences in circulating and renal angiotensins of hypertensive mRen(2). Lewis but not normotensive Lewis rats. , 2008, American Journal of Physiology. Heart and Circulatory Physiology.

[56]  Elliott J. Meer,et al.  The Collecting Duct Is the Major Source of Prorenin in Diabetes , 2008, Hypertension.

[57]  J. Kato,et al.  Localization of the novel angiotensin peptide, angiotensin-(1-12), in heart and kidney of hypertensive and normotensive rats. , 2008, American journal of physiology. Heart and circulatory physiology.

[58]  C. Ferrario,et al.  Angiotensin-(1-12) is an alternate substrate for angiotensin peptide production in the heart. , 2008, American journal of physiology. Heart and circulatory physiology.

[59]  A. Ferreira,et al.  Recent advances in the angiotensin‐converting enzyme 2–angiotensin(1–7)–Mas axis , 2008, Experimental physiology.

[60]  A. Dupont,et al.  Brain and peripheral angiotensin II type 1 receptors mediate renal vasoconstrictor and blood pressure responses to angiotensin IV in the rat , 2008, Journal of hypertension.

[61]  A. Gradman,et al.  Current concepts: renin inhibition in the treatment of hypertension. , 2008, Current opinion in pharmacology.

[62]  S. Shankland,et al.  Activation of a local renin angiotensin system in podocytes by glucose. , 2008, American journal of physiology. Renal physiology.

[63]  R. Schmieder,et al.  (Pro)Renin Receptor Peptide Inhibitor “Handle-Region” Peptide Does Not Affect Hypertensive Nephrosclerosis in Goldblatt Rats , 2008, Hypertension.

[64]  Merlin C. Thomas,et al.  ACE2 Deficiency Modifies Renoprotection Afforded by ACE Inhibition in Experimental Diabetes , 2008, Diabetes.

[65]  E. Schiffrin,et al.  Angiotensin-(1-7) Counterregulates Angiotensin II Signaling in Human Endothelial Cells , 2007, Hypertension.

[66]  D. Müller,et al.  Prorenin is the endogenous agonist of the (pro)renin receptor. Binding kinetics of renin and prorenin in rat vascular smooth muscle cells overexpressing the human (pro)renin receptor , 2007, Journal of hypertension.

[67]  M. Bader The second life of the (pro)renin receptor. , 2007, Journal of the renin-angiotensin-aldosterone system : JRAAS.

[68]  H. Itoh,et al.  (Pro)Renin Receptor–Mediated Activation of Mitogen-Activated Protein Kinases in Human Vascular Smooth Muscle Cells , 2007, Hypertension Research.

[69]  M. Chappell Emerging Evidence for a Functional Angiotensin-Converting Enzyme 2-Angiotensin-(1-7)-Mas Receptor Axis: More Than Regulation of Blood Pressure? , 2007, Hypertension.

[70]  M. Munger,et al.  Antihypertensive Efficacy of the Oral Direct Renin Inhibitor Aliskiren as Add‐On Therapy in Patients Not Responding to Amlodipine Monotherapy , 2007, Journal of clinical hypertension.

[71]  R. Carey,et al.  NO and cGMP mediate angiotensin AT2 receptor-induced renal renin inhibition in young rats. , 2007, American journal of physiology. Regulatory, integrative and comparative physiology.

[72]  D. Diz,et al.  Angiotensin-(1–7) Prevents Activation of NADPH Oxidase and Renal Vascular Dysfunction in Diabetic Hypertensive Rats , 2007, American Journal of Nephrology.

[73]  H. Kobori,et al.  The Intrarenal Renin-Angiotensin System: From Physiology to the Pathobiology of Hypertension and Kidney Disease , 2007, Pharmacological Reviews.

[74]  G. Wolf,et al.  Angiotensin II-induced reactive oxygen species and the kidney. , 2007, Journal of the American Society of Nephrology : JASN.

[75]  D. Batlle,et al.  ACE2 inhibition worsens glomerular injury in association with increased ACE expression in streptozotocin-induced diabetic mice. , 2007, Kidney international.

[76]  J. Penninger,et al.  Loss of angiotensin-converting enzyme-2 (Ace2) accelerates diabetic kidney injury. , 2007, The American journal of pathology.

[77]  M. Janech,et al.  Characterization of renin-angiotensin system enzyme activities in cultured mouse podocytes. , 2007, American journal of physiology. Renal physiology.

[78]  A. Nishiyama,et al.  Slowly progressive, angiotensin II-independent glomerulosclerosis in human (pro)renin receptor-transgenic rats. , 2007, Journal of the American Society of Nephrology : JASN.

[79]  R. Santos,et al.  Expression of an angiotensin-(1-7)-producing fusion protein in rats induced marked changes in regional vascular resistance. , 2007, American journal of physiology. Heart and circulatory physiology.

[80]  F. Suzuki,et al.  The His-Pro-Phe motif of angiotensinogen is a crucial determinant of the substrate specificity of renin , 2007, Biological chemistry.

[81]  E. Schiffrin,et al.  Angiotensin-(1-7) Through Receptor Mas Mediates Endothelial Nitric Oxide Synthase Activation via Akt-Dependent Pathways , 2007, Hypertension.

[82]  R. Felder,et al.  Intrarenal Dopamine D1-Like Receptor Stimulation Induces Natriuresis via an Angiotensin Type-2 Receptor Mechanism , 2007, Hypertension.

[83]  P. Pandolfi,et al.  A Novel Signal Transduction Cascade Involving Direct Physical Interaction of the Renin/Prorenin Receptor With the Transcription Factor Promyelocytic Zinc Finger Protein , 2006, Circulation research.

[84]  H. Itakura,et al.  Aliskiren, a Novel Oral Renin Inhibitor, Provides Dose-Dependent Efficacy and Placebo-Like Tolerability in Japanese Patients with Hypertension , 2006, Hypertension Research.

[85]  N. Minamino,et al.  Isolation and identification of proangiotensin-12, a possible component of the renin-angiotensin system. , 2006, Biochemical and biophysical research communications.

[86]  D. Batlle,et al.  Glomerular localization and expression of Angiotensin-converting enzyme 2 and Angiotensin-converting enzyme: implications for albuminuria in diabetes. , 2006, Journal of the American Society of Nephrology : JASN.

[87]  G. Wolf,et al.  Renin-angiotensin-aldosterone system and progression of renal disease. , 2006, Journal of the American Society of Nephrology : JASN.

[88]  R. Dart,et al.  Specific receptor for angiotensinogen on human renal cells. , 2006, Clinica chimica acta; international journal of clinical chemistry.

[89]  P. Opolon,et al.  Suppression of angiogenesis, tumor growth, and metastasis by adenovirus-mediated gene transfer of human angiotensinogen. , 2006, Molecular therapy : the journal of the American Society of Gene Therapy.

[90]  Martin Paul,et al.  Physiology of local renin-angiotensin systems. , 2006, Physiological reviews.

[91]  Z. Su,et al.  Angiotensin-(1-7) inhibits angiotensin II-stimulated phosphorylation of MAP kinases in proximal tubular cells. , 2006, Kidney international.

[92]  T. Hussain,et al.  Angiotensin II AT2 receptors inhibit proximal tubular Na+-K+-ATPase activity via a NO/cGMP-dependent pathway. , 2006, American journal of physiology. Renal physiology.

[93]  C. Sigmund,et al.  Angiotensinogen Modulates Renal Vasculature Growth , 2006, Hypertension.

[94]  M. Crackower,et al.  Loss of Angiotensin-Converting Enzyme-2 Leads to the Late Development of Angiotensin II-Dependent Glomerulosclerosis , 2006, The American Journal of Pathology.

[95]  G. Nguyen Renin/prorenin receptors. , 2006, Kidney international.

[96]  M. Ohishi,et al.  AT1 receptor-activated signaling mediates angiotensin IV-induced renal cortical vasoconstriction in rats. , 2006, American journal of physiology. Renal physiology.

[97]  R. Carey,et al.  Renal Angiotensin Type 2 Receptors Mediate Natriuresis Via Angiotensin III in the Angiotensin II Type 1 Receptor–Blocked Rat , 2006, Hypertension.

[98]  C. Ferrario Angiotensin-converting enzyme 2 and angiotensin-(1-7): an evolving story in cardiovascular regulation. , 2006, Hypertension.

[99]  J. Anim,et al.  Angiotensin-(1-7) prevents development of severe hypertension and end-organ damage in spontaneously hypertensive rats treated with L-NAME. , 2006, American journal of physiology. Heart and circulatory physiology.

[100]  R. Mortara,et al.  Expression and localization of N-domain ANG I-converting enzymes in mesangial cells in culture from spontaneously hypertensive rats. , 2006, American journal of physiology. Renal physiology.

[101]  N. Hooper,et al.  Angiotensin-converting Enzyme 2 (ACE2), But Not ACE, Is Preferentially Localized to the Apical Surface of Polarized Kidney Cells* , 2005, Journal of Biological Chemistry.

[102]  G. Wolf Role of reactive oxygen species in angiotensin II-mediated renal growth, differentiation, and apoptosis. , 2005, Antioxidants & redox signaling.

[103]  J. Modrall,et al.  Angiotensin converting enzyme-independent angiotensin ii production by chymase is up-regulated in the ischemic kidney in renovascular hypertension. , 2005, The Journal of surgical research.

[104]  Ashutosh Kumar Singh,et al.  A novel mechanism for angiotensin II formation in streptozotocin-diabetic rat glomeruli. , 2005, American journal of physiology. Renal physiology.

[105]  R. Carey Cardiovascular and Renal Regulation by the Angiotensin Type 2 Receptor: The AT2 Receptor Comes of Age , 2005, Hypertension.

[106]  N. Hooper,et al.  Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. , 2004, The Biochemical journal.

[107]  S. Ye,et al.  Membrane bound members of the M1 family: more than aminopeptidases. , 2004, Protein and peptide letters.

[108]  H. Kobori,et al.  Enhancement of Collecting Duct Renin in Angiotensin II–Dependent Hypertensive Rats , 2004, Hypertension.

[109]  X. Li,et al.  AT2 receptor‐mediated vasodilatation is unmasked by AT1 receptor blockade in conscious SHR , 2004, British journal of pharmacology.

[110]  J. Lalouel,et al.  Expression of angiotensinogen in proximal tubule as a function of glomerular filtration rate. , 2004, Kidney international.

[111]  M. Cavasin,et al.  Prolyl Oligopeptidase Is Involved in Release of the Antifibrotic Peptide Ac-SDKP , 2004, Hypertension.

[112]  Pierre Meneton,et al.  Renin and kallikrein in connecting tubule of mouse. , 2003, Kidney international.

[113]  T. Saruta,et al.  Angiotensin II type 2 receptor inhibits prorenin processing in juxtaglomerular cells. , 2003, Hypertension research : official journal of the Japanese Society of Hypertension.

[114]  R. Carey,et al.  Angiotensin AT2 Receptors Directly Stimulate Renal Nitric Oxide in Bradykinin B2-Receptor–Null Mice , 2003, Hypertension.

[115]  R. Carey,et al.  The intrarenal renin–angiotensin system and diabetic nephropathy , 2003, Trends in Endocrinology & Metabolism.

[116]  S. Ye,et al.  Angiotensin AT4 ligands are potent, competitive inhibitors of insulin regulated aminopeptidase (IRAP) , 2003, Journal of neurochemistry.

[117]  Thomas Walther,et al.  Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[118]  H. Kobori,et al.  Enhancement of Intrarenal Angiotensinogen in Dahl Salt-Sensitive Rats on High Salt Diet , 2003, Hypertension.

[119]  M. Clark,et al.  Angiotensin-(1–7) Reduces Renal Angiotensin II Receptors through a Cyclooxygenase-Dependent Mechanism , 2003, Journal of cardiovascular pharmacology.

[120]  H. Kobori,et al.  Urinary Angiotensinogen as an Indicator of Intrarenal Angiotensin Status in Hypertension , 2003, Hypertension.

[121]  L. Dobrucki,et al.  AVE 0991, a Nonpeptide Mimic of the Effects of Angiotensin-(1–7) on the Endothelium , 2002, Hypertension.

[122]  K.,et al.  Vasopeptidase inhibition and Ang-(1-7) in the spontaneously hypertensive rat. , 2002, Kidney international.

[123]  Anne K. Mongiu,et al.  Impaired urine concentration and absence of tissue ACE: involvement of medullary transport proteins. , 2002, American journal of physiology. Renal physiology.

[124]  M. Crackower,et al.  Angiotensin-converting enzyme 2 is an essential regulator of heart function , 2002, Nature.

[125]  J. Mullins,et al.  Functional Significance of Prorenin Internalization in the Rat Heart , 2002, Circulation research.

[126]  T. Parsons,et al.  Hydrolysis of Biological Peptides by Human Angiotensin-converting Enzyme-related Carboxypeptidase* , 2002, The Journal of Biological Chemistry.

[127]  O. Carretero,et al.  Vasodilator Action of Angiotensin-(1-7) on Isolated Rabbit Afferent Arterioles , 2002, Hypertension.

[128]  P. Corvol,et al.  Angiotensinogen and Its Cleaved Derivatives Inhibit Angiogenesis , 2002, Hypertension.

[129]  H. Kobori,et al.  Urinary excretion of angiotensinogen reflects intrarenal angiotensinogen production. , 2002, Kidney international.

[130]  N. Sterin-Speziale,et al.  Enhancement of phosphatidylcholine biosynthesis by angiotensin-(1-7) in the rat renal cortex. , 2002, Biochemical pharmacology.

[131]  L. Gendron,et al.  Nitric Oxide and Cyclic GMP Are Involved in Angiotensin II AT2 Receptor Effects on Neurite Outgrowth in NG108-15 Cells , 2002, Neuroendocrinology.

[132]  R. Simpson,et al.  Evidence That the Angiotensin IV (AT4) Receptor Is the Enzyme Insulin-regulated Aminopeptidase* , 2001, The Journal of Biological Chemistry.

[133]  Y. Mori,et al.  Angiotensin II Type 2 Receptor Inhibits Epidermal Growth Factor Receptor Transactivation by Increasing Association of SHP-1 Tyrosine Phosphatase , 2001, Hypertension.

[134]  O. Ito,et al.  Involvement of cytochrome P450 metabolites in the vascular action of angiotensin II on the afferent arterioles. , 2001, Hypertension research : official journal of the Japanese Society of Hypertension.

[135]  A. Allred,et al.  Pathways of angiotensin-(1-7) metabolism in the kidney. , 2001, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[136]  Y. Mori,et al.  Effect of angiotensin II type 2 receptor on tyrosine kinase Pyk2 and c-Jun NH2-terminal kinase via SHP-1 tyrosine phosphatase activity: evidence from vascular-targeted transgenic mice of AT2 receptor. , 2001, Biochemical and biophysical research communications.

[137]  R. Ardaillou,et al.  Effects of angiotensin IV and angiotensin-(1-7) on basal and angiotensin II-stimulated cytosolic Ca2+ in mesangial cells. , 2001, European journal of pharmacology.

[138]  D. Weiss,et al.  Angiotensin II–Induced Hypertension Accelerates the Development of Atherosclerosis in ApoE-Deficient Mice , 2001, Circulation.

[139]  H. Heitsch,et al.  Angiotensin-(1-7)–Stimulated Nitric Oxide and Superoxide Release From Endothelial Cells , 2001, Hypertension.

[140]  Nigel M. Hooper,et al.  A Human Homolog of Angiotensin-converting Enzyme , 2000, The Journal of Biological Chemistry.

[141]  K. Robison,et al.  A Novel Angiotensin-Converting Enzyme–Related Carboxypeptidase (ACE2) Converts Angiotensin I to Angiotensin 1-9 , 2000, Circulation research.

[142]  D. Diz,et al.  Evidence that prostaglandins mediate the antihypertensive actions of angiotensin-(1-7) during chronic blockade of the renin-angiotensin system. , 2000, Journal of cardiovascular pharmacology.

[143]  J. Maly,et al.  Effect of Intrarenal Infusion of Angiotensin–(1–7) in the Dog , 2000, Kidney and Blood Pressure Research.

[144]  J. Lalouel,et al.  Elements of a paracrine tubular renin-angiotensin system along the entire nephron. , 1999, Hypertension.

[145]  R. Widdop,et al.  AT(2) receptor stimulation enhances antihypertensive effect of AT(1) receptor antagonist in hypertensive rats. , 1999, Hypertension.

[146]  Y. Mori,et al.  Angiotensin II type 2 receptor overexpression activates the vascular kinin system and causes vasodilation. , 1999, The Journal of clinical investigation.

[147]  B. Roques,et al.  Aminopeptidase A activity and angiotensin III effects on [Ca2+]i along the rat nephron. , 1999, Kidney international.

[148]  R. Carey,et al.  Protective role of the angiotensin AT2 receptor in a renal wrap hypertension model. , 1999, Hypertension.

[149]  C. Ferrario,et al.  Differential response of angiotensin peptides in the urine of hypertensive animals , 1999, Regulatory Peptides.

[150]  D. Golan,et al.  Estradiol induces the calcium-dependent translocation of endothelial nitric oxide synthase. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[151]  S. Clausmeyer,et al.  An alternative transcript of the rat renin gene can result in a truncated prorenin that is transported into adrenal mitochondria. , 1999, Circulation research.

[152]  D. Healy,et al.  Kidney aminopeptidase A and hypertension, part I: spontaneously hypertensive rats. , 1999, Hypertension.

[153]  D. Healy,et al.  Kidney aminopeptidase A and hypertension, part II: effects of angiotensin II. , 1999, Hypertension.

[154]  M. Ohishi,et al.  Mapping tissue angiotensin‐converting enzyme and angiotensin AT1, AT2 and AT4 receptors , 1998, Journal of hypertension.

[155]  C. Pẽna,et al.  Effect of angiotensin-(1–7) on ATPase activities in several tissues , 1998, Regulatory Peptides.

[156]  Y. Mori,et al.  Tissue-Specific Expression of Human Angiotensin II AT1 and AT2 Receptors and Cellular Localization of Subtype mRNAs in Adult Human Renal Cortex Using in situ Hybridization , 1998, Nephron.

[157]  N. Heyne,et al.  [7-D-ALA]-angiotensin 1-7 blocks renal actions of angiotensin 1-7 in the anesthetized rat. , 1998, Journal of cardiovascular pharmacology.

[158]  E. Kramár,et al.  Role of nitric oxide in angiotensin IV-induced increases in cerebral blood flow , 1998, Regulatory Peptides.

[159]  L. Chao,et al.  Kallikrein gene delivery attenuates hypertension and cardiac hypertrophy and enhances renal function in Goldblatt hypertensive rats. , 1998, Hypertension.

[160]  J. Wright,et al.  Autoradiographic Identification of Kidney Angiotensin IV Binding Sites and Angiotensin IV-Induced Renal Cortical Blood Flow Changes in Rats , 1998, Peptides.

[161]  N. Martell,et al.  Characterization of angiotensin-(1-7) in the urine of normal and essential hypertensive subjects. , 1998, American journal of hypertension.

[162]  G. Wolf,et al.  Overexpression of aminopeptidase A abolishes the growth promoting effects of angiotensin II in cultured mouse mesangial cells. , 1997, Kidney international.

[163]  R. Carey,et al.  Expression of the subtype 2 angiotensin (AT2) receptor protein in rat kidney. , 1997, Hypertension.

[164]  J. Douglas,et al.  Angiotensin II type 2 receptor subtype mediates phospholipase A2-dependent signaling in rabbit proximal tubular epithelial cells. , 1996, Hypertension.

[165]  R. Carey,et al.  The subtype-2 (AT2) angiotensin receptor regulates renal cyclic guanosine 3', 5'-monophosphate and AT1 receptor-mediated prostaglandin E2 production in conscious rats. , 1996, The Journal of clinical investigation.

[166]  S. Hilchey,et al.  Association between the natriuretic action of angiotensin-(1-7) and selective stimulation of renal prostaglandin I2 release. , 1995, Hypertension.

[167]  S. Bardhan,et al.  Protein tyrosine phosphatase inhibition by angiotensin II in rat pheochromocytoma cells through type 2 receptor, AT2. , 1994, Biochemical and biophysical research communications.

[168]  A. Dellipizzi,et al.  Natriuretic action of angiotensin(1–7) , 1994, British journal of pharmacology.

[169]  M. Romero,et al.  Modulation of phospholipase A2 activity and sodium transport by angiotensin-(1-7). , 1993, Kidney international.

[170]  C. Ferrario,et al.  In Vivo Metabolism of Angiotensin I by Neutral Endopeptidase (EC 3.4.24.11) in Spontaneously Hypertensive Rats , 1992, Hypertension.

[171]  J. M. Muñoz,et al.  The substance causing renal hypertension , 1940, The Journal of physiology.

[172]  F. Dominici,et al.  Angiotensin-(1-7) reduces proteinuria and diminishes structural damage in renal tissue of stroke-prone spontaneously hypertensive rats. , 2011, AJP - Renal Physiology.

[173]  H. Kobori,et al.  Major role for ACE-independent intrarenal ANG II formation in type II diabetes. , 2010, American journal of physiology. Renal physiology.

[174]  H. Shaltout,et al.  Angiotensin metabolism in renal proximal tubules, urine, and serum of sheep: evidence for ACE2-dependent processing of angiotensin II. , 2007, American journal of physiology. Renal physiology.

[175]  Ling Yu,et al.  Renin increases mesangial cell transforming growth factor-beta1 and matrix proteins through receptor-mediated, angiotensin II-independent mechanisms. , 2006, Kidney international.

[176]  P. Kugler Aminopeptidase A is angiotensinase A , 2004, Histochemistry.

[177]  C. Ferrario,et al.  Release of angiotensin-(1-7) from the rat hindlimb: influence of angiotensin-converting enzyme inhibition. , 2000, Hypertension.

[178]  C. Ferrario,et al.  Metabolism of angiotensin-(1-7) by angiotensin-converting enzyme. , 1998, Hypertension.

[179]  F. Palmieri,et al.  Metabolism of vasoactive peptides by vascular endothelium and smooth muscle aminopeptidase M. , 1989, Biochemical pharmacology.