Improving the MITC3 shell finite element by using the Hellinger-Reissner principle

The objective of this study is to improve the performance of the MITC3 shell finite element. The Hellinger-Reissner (HR) variational principle is modified in the framework of the MITC method, and a special approximated transverse shear strain field is proposed. The MITC3-HR shell finite element improved by using the Hellinger-Reissner functional passes all the basic tests (zero energy mode test, patch test, and isotropic element test). Convergence studies considering a fully clamped plate problem, a sixty-degree skew plate problem, cylindrical shell problems, and hyperboloid shell problems demonstrate the improved predictive capability of the new 3-node shell finite element.

[1]  D. Chapelle,et al.  The Finite Element Analysis of Shells - Fundamentals , 2003 .

[2]  C. W. S. To,et al.  Hybrid strain based three-node flat triangular shell elements , 1994 .

[3]  Dominique Chapelle,et al.  Towards improving the MITC6 triangular shell element , 2007 .

[4]  Carlo Lovadina,et al.  A SHELL CLASSIFICATION BY INTERPOLATION , 2002 .

[5]  J. J. Rhiu,et al.  A new efficient mixed formulation for thin shell finite element models , 1987 .

[6]  Phill-Seung Lee,et al.  Insight into 3-node triangular shell finite elements: the effects of element isotropy and mesh patterns , 2007 .

[7]  Lourenço Beirão da Veiga,et al.  Uniform error estimates for a class of intermediate cylindrical shell problems , 2004, Numerische Mathematik.

[8]  K. Bathe,et al.  Development of MITC isotropic triangular shell finite elements , 2004 .

[9]  Phill-Seung Lee,et al.  The quadratic MITC plate and MITC shell elements in plate bending , 2010, Adv. Eng. Softw..

[10]  Harri Hakula,et al.  Scale resolution, locking, and high-order finite element modelling of shells , 1996 .

[11]  K. Bathe,et al.  A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .

[12]  Phill-Seung Lee,et al.  Towards improving the MITC9 shell element , 2003 .

[13]  Phill-Seung Lee,et al.  Measuring the convergence behavior of shell analysis schemes , 2011 .

[14]  Lourenço Beirão da Veiga,et al.  Asymptotic energy behavior of two classical intermediate benchmark shell problems , 2002 .

[15]  Otso Ovaskainen,et al.  Shell deformation states and the finite element method : a benchmark study of cylindrical shells , 1995 .

[16]  Eduardo N. Dvorkin,et al.  A formulation of general shell elements—the use of mixed interpolation of tensorial components† , 1986 .

[17]  Klaus-Jürgen Bathe,et al.  The inf–sup condition and its evaluation for mixed finite element methods , 2001 .

[18]  Alexander G Iosilevich,et al.  An evaluation of the MITC shell elements , 2000 .

[19]  K. Bathe Finite Element Procedures , 1995 .

[20]  M. L. Bucalém,et al.  Higher‐order MITC general shell elements , 1993 .

[21]  Alexander G Iosilevich,et al.  An inf-sup test for shell finite elements , 2000 .

[22]  Phill-Seung Lee,et al.  On the asymptotic behavior of shell structures and the evaluation in finite element solutions , 2002 .

[23]  K. Bathe,et al.  Fundamental considerations for the finite element analysis of shell structures , 1998 .

[24]  Dominique Chapelle,et al.  The mathematical shell model underlying general shell elements , 2000 .

[25]  K. Bathe,et al.  Measuring convergence of mixed finite element discretizations: an application to shell structures , 2003 .

[26]  Dominique Chapelle,et al.  A shell problem ‘highly sensitive’ to thickness changes , 2003 .

[27]  Phill-Seung Lee,et al.  Insight into finite element shell discretizations by use of the basic shell mathematical model , 2005 .