r-Whitney numbers of Dowling lattices

Abstract Let G be a finite group of order m ≥ 1 . A Dowling lattice Q n ( G ) is the geometric lattice of rank n over G . In this paper, we define the r -Whitney numbers of the first and second kind over Q n ( G ) , respectively. This concept is a common generalization of the Whitney numbers and the r -Stirling numbers of both kinds. We give their combinatorial interpretations over the Dowling lattice and we obtain various new algebraic identities. In addition, we develop the r -Whitney–Lah numbers and the r -Dowling polynomials associated with the Dowling lattice.

[1]  Bruce E. Sagan,et al.  A Generalization of Rota′s NBC Theorem , 1995 .

[2]  Moussa Benoumhani,et al.  Log-Concavity of Whitney Numbers of Dowling Lattices , 1999 .

[3]  Hana Kim,et al.  A generalization of Lucas polynomial sequence , 2009, Discret. Appl. Math..

[4]  Renzo Sprugnoli,et al.  Riordan arrays and combinatorial sums , 1994, Discret. Math..

[5]  G. Rota On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .

[6]  A. Luzon,et al.  Recurrence relations for polynomial sequences via Riordan matrices , 2009 .

[7]  Andrei Z. Broder,et al.  The r-Stirling numbers , 1984, Discret. Math..

[8]  Moawwad E. A. El-Mikkawy,et al.  Generalized harmonic numbers with Riordan arrays , 2008 .

[9]  Louis W. Shapiro,et al.  The Riordan group , 1991, Discret. Appl. Math..

[10]  István Mező,et al.  A New Formula for the Bernoulli Polynomials , 2010 .

[11]  Kazuya Kato,et al.  Number Theory 1 , 1999 .

[12]  Moussa Benoumhani,et al.  On Whitney numbers of Dowling lattices , 1996, Discret. Math..

[13]  Yi Wang,et al.  A unified approach to polynomial sequences with only real zeros , 2005, Adv. Appl. Math..

[14]  Moussa Benoumhani,et al.  On some numbers related to Whitney numbers of Dowling lattices , 1997 .

[15]  Carl G. Wagner,et al.  Generalized Stirling and Lah numbers , 1996, Discret. Math..

[16]  Thomas A. Dowling,et al.  A class of geometric lattices based on finite groups , 1973 .

[17]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..