Membrane Protein Structure, Function, and Dynamics: a Perspective from Experiments and Theory

Membrane proteins mediate processes that are fundamental for the flourishing of biological cells. Membrane-embedded transporters move ions and larger solutes across membranes; receptors mediate communication between the cell and its environment and membrane-embedded enzymes catalyze chemical reactions. Understanding these mechanisms of action requires knowledge of how the proteins couple to their fluid, hydrated lipid membrane environment. We present here current studies in computational and experimental membrane protein biophysics, and show how they address outstanding challenges in understanding the complex environmental effects on the structure, function, and dynamics of membrane proteins.

[1]  N. Unwin,et al.  Refined structure of the nicotinic acetylcholine receptor at 4A resolution. , 2005, Journal of molecular biology.

[2]  C. Del Val,et al.  Channelrhodopsins: a bioinformatics perspective. , 2014, Biochimica et biophysica acta.

[3]  Ran Friedman,et al.  Aggregation of amyloids in a cellular context: modelling and experiment. , 2011, The Biochemical journal.

[4]  R. MacKinnon,et al.  Phospholipids and the origin of cationic gating charges in voltage sensors , 2006, Nature.

[5]  D. Wales,et al.  Theoretical study of the water tetramer , 1997 .

[6]  Werner Treptow,et al.  Environment of the gating charges in the Kv1.2 Shaker potassium channel. , 2006, Biophysical journal.

[7]  Thomas Ertl,et al.  Interactive Extraction and Tracking of Biomolecular Surface Features , 2013, Comput. Graph. Forum.

[8]  L. Pardo,et al.  The importance of solvation in the design of ligands targeting membrane proteins , 2011 .

[9]  D. Wales,et al.  Rearrangements of the water trimer , 1996 .

[10]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[11]  Ilsoo Kim,et al.  On the selective ion binding hypothesis for potassium channels , 2011, Proceedings of the National Academy of Sciences.

[12]  P. Lansbury,et al.  Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson's disease: implications for pathogenesis and therapy. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Hiro Furukawa,et al.  Crystal structure of a heterotetrameric NMDA receptor ion channel , 2014, Science.

[14]  David J Wales,et al.  Equilibrium thermodynamics from basin-sampling. , 2006, The Journal of chemical physics.

[15]  Forcing independent velocity distributions in an experimental granular fluid. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  M. Erion,et al.  Calculation of relative binding free energy differences for fructose 1,6-bisphosphatase inhibitors using the thermodynamic cycle perturbation approach. , 2001, Journal of the American Chemical Society.

[17]  Johannes Schmidt-Ehrenberg Analysis and Visualization of Molecular Conformations , 2008 .

[18]  David J. Wales,et al.  The free energy landscape and dynamics of met-enkephalin , 2003 .

[19]  B. Hille,et al.  Phosphoinositides regulate ion channels. , 2015, Biochimica et biophysica acta.

[20]  H. Arias,et al.  Effect of local anaesthetics on steroid-nicotinic acetylcholine receptor interactions in native membranes of Torpedo marmorata electric organ. , 1990, Biochimica et biophysica acta.

[21]  Jeremy C. Smith,et al.  Mechanism and kinetics of peptide partitioning into membranes from all-atom simulations of thermostable peptides. , 2010, Journal of the American Chemical Society.

[22]  K. Hahm,et al.  Investigation of single-molecule kinetics mediated by weak hydrogen bonds within a biological nanopore. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[23]  M. McNamee,et al.  Reconstitution of acetylcholine receptor function in lipid vesicles of defined composition. , 1983, Biochimica et biophysica acta.

[24]  William A. Catterall,et al.  Crystal structure of a voltage-gated sodium channel in two potentially inactivated states , 2012, Nature.

[25]  M. Simmonds,et al.  Influence of membrane cholesterol on modulation of the GABAA receptor by neuroactive steroids and other potentiators , 2001, British journal of pharmacology.

[26]  B. Wilkinson,et al.  Interactions between Sec complex and prepro-alpha-factor during posttranslational protein transport into the endoplasmic reticulum. , 2003, Molecular biology of the cell.

[27]  J Wang,et al.  Structure of the transmembrane region of the M2 protein H+ channel , 2001, Protein science : a publication of the Protein Society.

[28]  M. Simmonds,et al.  Increased membrane cholesterol reduces the potentiation of GABAA currents by neurosteroids in dissociated hippocampal neurones , 1998, Neuropharmacology.

[29]  M. Karplus,et al.  Simulation of activation free energies in molecular systems , 1996 .

[30]  L. Firestone,et al.  Two pools of cholesterol in acetylcholine receptor-rich membranes from Torpedo. , 1987, Biochimica et biophysica acta.

[31]  T. Lazaridis Effective energy function for proteins in lipid membranes , 2003, Proteins.

[32]  Jun Wang,et al.  Specific binding of adamantane drugs and direction of their polar amines in the pore of the influenza M2 transmembrane domain in lipid bilayers and dodecylphosphocholine micelles determined by NMR spectroscopy. , 2011, Journal of the American Chemical Society.

[33]  Werner Treptow,et al.  Intermediate states of the Kv1.2 voltage sensor from atomistic molecular dynamics simulations , 2011, Proceedings of the National Academy of Sciences.

[34]  R. Stroud,et al.  Lateral opening of a translocon upon entry of protein suggests the mechanism of insertion into membranes , 2010, Proceedings of the National Academy of Sciences.

[35]  J. Danielsson,et al.  The Alzheimer β‐peptide shows temperature‐dependent transitions between left‐handed 31‐helix, β‐strand and random coil secondary structures , 2005 .

[36]  J. Lasalde-Dominicci,et al.  Potential role of caveolin-1-positive domains in the regulation of the acetylcholine receptor's activable pool: Implications in the pathogenesis of a novel congenital myasthenic syndrome , 2008, Channels.

[37]  Y. Sugita,et al.  Conformational transition of Sec machinery inferred from bacterial SecYE structures , 2008, Nature.

[38]  P. Keller,et al.  Globular amyloid beta-peptide oligomer - a homogenous and stable neuropathological protein in Alzheimer's disease. , 2005, Journal of neurochemistry.

[39]  M. Maggiolini,et al.  G protein-coupled receptors: novel targets for drug discovery in cancer , 2010, Nature Reviews Drug Discovery.

[40]  William Ribarsky,et al.  Data Visualization ’99 , 1999, Eurographics.

[41]  Christof Schütte,et al.  Metastability and Markov State Models in Molecular Dynamics Modeling, Analysis , 2016 .

[42]  Liang Feng,et al.  Enzymatic analysis of a rhomboid intramembrane protease implicates transmembrane helix 5 as the lateral substrate gate , 2007, Proceedings of the National Academy of Sciences.

[43]  Christopher M Dobson,et al.  Cytochrome display on amyloid fibrils. , 2006, Journal of the American Chemical Society.

[44]  Bert van den Berg,et al.  X-ray structure of a protein-conducting channel , 2004, Nature.

[45]  R. M. Owen,et al.  Ion channels as therapeutic targets: a drug discovery perspective. , 2013, Journal of medicinal chemistry.

[46]  Repetitive pulling catalyzes co-translocational unfolding of barnase during import through a mitochondrial pore. , 2005, Journal of molecular biology.

[47]  Wonpil Im,et al.  E. coli outer membrane and interactions with OmpLA. , 2014, Biophysical journal.

[48]  Leonardo E. Silbert,et al.  Jamming of frictional spheres and random loose packing , 2010, 1108.0012.

[49]  M. Klein,et al.  Initial response of the potassium channel voltage sensor to a transmembrane potential. , 2009, Journal of the American Chemical Society.

[50]  Mark S. P. Sansom,et al.  Reduced Lateral Mobility of Lipids and Proteins in Crowded Membranes , 2013, PLoS Comput. Biol..

[51]  P. Schwille,et al.  Lipids as Modulators of Proteolytic Activity of BACE , 2005, Journal of Biological Chemistry.

[52]  Gunnar von Heijne,et al.  Membrane Insertion of a Potassium-Channel Voltage Sensor , 2005, Science.

[53]  M. McNamee,et al.  Lipid-protein interactions in reconstituted membranes containing acetylcholine receptor. , 1983, Biochemistry.

[54]  Jeffrey J Clare,et al.  Targeting ion channels for drug discovery. , 2010, Discovery medicine.

[55]  M. Klein,et al.  Embedded cholesterol in the nicotinic acetylcholine receptor , 2008, Proceedings of the National Academy of Sciences.

[56]  Nicolas Foloppe,et al.  Rigorous Free Energy Calculations in Structure‐Based Drug Design , 2010, Molecular informatics.

[57]  R. Stevens,et al.  Structural Basis for Allosteric Regulation of GPCRs by Sodium Ions , 2012, Science.

[58]  A. Driessen,et al.  Protein translocation across the bacterial cytoplasmic membrane. , 2008, Annual review of biochemistry.

[59]  T. Piggot,et al.  Electroporation of the E. coli and S. Aureus membranes: molecular dynamics simulations of complex bacterial membranes. , 2011, The journal of physical chemistry. B.

[60]  W. Catterall,et al.  THE CRYSTAL STRUCTURE OF A VOLTAGE-GATED SODIUM CHANNEL , 2011, Nature.

[61]  Amedeo Caflisch,et al.  Surfactant effects on amyloid aggregation kinetics. , 2011, Journal of molecular biology.

[62]  L. Delemotte,et al.  Dual Effect of Phosphatidyl (4,5)-Bisphosphate PIP2 on Shaker K+ Channels* , 2012, The Journal of Biological Chemistry.

[63]  Daniel Baum,et al.  Voronoi-Based Extraction and Visualization of Molecular Paths , 2011, IEEE Transactions on Visualization and Computer Graphics.

[64]  Adrian A Nickson,et al.  The morphology of decorated amyloid fibers is controlled by the conformation and position of the displayed protein. , 2012, ACS nano.

[65]  S. Feller,et al.  Rhodopsin exhibits a preference for solvation by polyunsaturated docosohexaenoic acid. , 2003, Journal of the American Chemical Society.

[66]  T. Allen,et al.  Origins of ion selectivity in potassium channels from the perspective of channel block , 2011, The Journal of general physiology.

[67]  S. Vanni,et al.  A sub-nanometre view of how membrane curvature and composition modulate lipid packing and protein recruitment , 2014, Nature Communications.

[68]  S. Dunn,et al.  Functional reconstitution of the bovine brain GABAA receptor from solubilized components. , 1989, Biochemistry.

[69]  M. Troll,et al.  Ionic Current Blockades from DNA and RNA Molecules in the α-Hemolysin Nanopore , 2007 .

[70]  I. Andricioaei,et al.  Slowing down single-molecule trafficking through a protein nanopore reveals intermediates for peptide translocation , 2014, Scientific Reports.

[71]  Peter J Bond,et al.  Membrane simulations of OpcA: gating in the loops? , 2007, Biophysical journal.

[72]  Brian P. Tighe,et al.  The force network ensemble for granular packings , 2010, 1004.3143.

[73]  Vadim Cherezov,et al.  A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. , 2008, Structure.

[74]  T. Piggot,et al.  Stability and membrane interactions of an autotransport protein: MD simulations of the Hia translocator domain in a complex membrane environment. , 2013, Biochimica et biophysica acta.

[75]  S. Bhakdi,et al.  Electrophysiological evidence for heptameric stoichiometry of ion channels formed by Staphylococcus aureus alpha‐toxin in planar lipid bilayers , 2000, Molecular microbiology.

[76]  N. Buchete,et al.  Alzheimer Aβ peptide interactions with lipid membranes , 2012, Prion.

[77]  C. Dekker Solid-state nanopores. , 2007, Nature nanotechnology.

[78]  Jeremy C. Smith,et al.  Coarse-grained biomolecular simulation with REACH: realistic extension algorithm via covariance Hessian. , 2007, Biophysical journal.

[79]  Lei Liu,et al.  Free energy calculations on the two drug binding sites in the M2 proton channel. , 2011, Journal of the American Chemical Society.

[80]  David J Wales,et al.  Effect of salt bridges on the energy landscape of a model protein. , 2004, The Journal of chemical physics.

[81]  R. Gruener,et al.  Halothane-induced changes in acetylcholine receptor channel kinetics are attenuated by cholesterol. , 1986, Biochimica et biophysica acta.

[82]  Bertil Hille,et al.  PIP2 is a necessary cofactor for ion channel function: how and why? , 2008, Annual review of biophysics.

[83]  L. Delemotte,et al.  Omega currents in voltage-gated ion channels: what can we learn from uncovering the voltage-sensing mechanism using MD simulations? , 2013, Accounts of chemical research.

[84]  T. Morgan,et al.  Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[85]  Alan Grossfield,et al.  A role for direct interactions in the modulation of rhodopsin by omega-3 polyunsaturated lipids. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[86]  Zhe Lu,et al.  Enzymatic activation of voltage-gated potassium channels , 2006, Nature.

[87]  Jeremy C. Smith,et al.  In silico partitioning and transmembrane insertion of hydrophobic peptides under equilibrium conditions. , 2011, Journal of the American Chemical Society.

[88]  Eric Gouaux,et al.  X-ray structures of AMPA receptor–cone snail toxin complexes illuminate activation mechanism , 2014, Science.

[89]  S. Urban,et al.  Proteolysis inside the Membrane Is a Rate-Governed Reaction Not Driven by Substrate Affinity , 2013, Cell.

[90]  T. Straatsma,et al.  Characterization of the outer membrane protein OprF of Pseudomonas aeruginosa in a lipopolysaccharide membrane by computer simulation , 2009, Proteins.

[91]  J. Killian,et al.  Impaired processing of human pro-islet amyloid polypeptide is not a causative factor for fibril formation or membrane damage in vitro. , 2009, Biochemistry.

[92]  Gunnar von Heijne,et al.  How translocons select transmembrane helices. , 2008, Annual review of biophysics.

[93]  M. Pastor,et al.  Molecular modeling and simulation of membrane lipid-mediated effects on GPCRs. , 2012, Current medicinal chemistry.

[94]  M. Troll,et al.  Determination of RNA orientation during translocation through a biological nanopore. , 2006, Biophysical journal.

[95]  Irene Yarovsky,et al.  Inhibition of peptide aggregation by lipids: insights from coarse-grained molecular simulations. , 2011, Journal of molecular graphics & modelling.

[96]  Meng Cui,et al.  PIP2 controls voltage-sensor movement and pore opening of Kv channels through the S4–S5 linker , 2012, Proceedings of the National Academy of Sciences.

[97]  Penny Rheingans,et al.  Visualization of Molecules with Positional Uncertainty , 1999 .

[98]  Jeremy S. Lee,et al.  Nanopore analysis of a small 86-residue protein. , 2008, Small.

[99]  T. Piggot,et al.  Conformational dynamics and membrane interactions of the E. coli outer membrane protein FecA: a molecular dynamics simulation study. , 2013, Biochimica et biophysica acta.

[100]  K. Hasegawa,et al.  Growth of beta(2)-microglobulin-related amyloid fibrils by non-esterified fatty acids at a neutral pH. , 2008, The Biochemical journal.

[101]  T. Head-Gordon,et al.  Embedding Aβ42 in heterogeneous membranes depends on cholesterol asymmetries. , 2013, Biophysical journal.

[102]  B. Roux,et al.  Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands , 2004, Nature.

[103]  Y. Ha,et al.  Catalytic Mechanism of Rhomboid Protease GlpG Probed by 3,4-Dichloroisocoumarin and Diisopropyl Fluorophosphonate* , 2011, The Journal of Biological Chemistry.

[104]  P. Dijkman,et al.  Lipid-dependent GPCR dimerization. , 2013, Methods in cell biology.

[105]  David J. Wales,et al.  Surveying a complex potential energy landscape: Overcoming broken ergodicity using basin-sampling , 2013 .

[106]  R. Zwanzig High‐Temperature Equation of State by a Perturbation Method. I. Nonpolar Gases , 1954 .

[107]  Daniel Baum,et al.  Visualizing dynamic molecular conformations , 2002, IEEE Visualization, 2002. VIS 2002..

[108]  M. Martinho,et al.  Thermal unfolding of proteins probed at the single molecule level using nanopores. , 2012, Analytical chemistry.

[109]  Eric Gouaux,et al.  Pore architecture and ion sites in acid sensing ion channels and P2X receptors , 2009, Nature.

[110]  Thomas J. Piggot,et al.  Molecular Dynamics Simulations of Phosphatidylcholine Membranes: A Comparative Force Field Study. , 2012, Journal of chemical theory and computation.

[111]  David J Wales,et al.  Potential energy and free energy landscapes. , 2006, The journal of physical chemistry. B.

[112]  W. Soeller,et al.  Spontaneous diabetes mellitus in transgenic mice expressing human islet amyloid polypeptide. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[113]  J. Neyton,et al.  Discrete Ba2+ block as a probe of ion occupancy and pore structure in the high-conductance Ca2+ -activated K+ channel , 1988, The Journal of general physiology.

[114]  Eric Gouaux,et al.  Principles of activation and permeation in an anion-selective Cys-loop receptor , 2011, Nature.

[115]  T. Straatsma,et al.  Computer simulation of the rough lipopolysaccharide membrane of Pseudomonas aeruginosa. , 2001, Biophysical journal.

[116]  Diomedes E. Logothetis,et al.  Channelopathies linked to plasma membrane phosphoinositides , 2010, Pflügers Archiv - European Journal of Physiology.

[117]  Hideaki E. Kato,et al.  Crystal structure of the channelrhodopsin light-gated cation channel , 2012, Nature.

[118]  Xiao Tao,et al.  Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2 , 2011, Nature.

[119]  D Peter Tieleman,et al.  Molecular basis of voltage gating of OmpF porin. , 2002, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[120]  M L Lamb,et al.  Computational approaches to molecular recognition. , 1997, Current opinion in chemical biology.

[121]  Lucie Delemotte,et al.  Molecular Dynamics Simulations of Lipid Membrane Electroporation , 2012, The Journal of Membrane Biology.

[122]  M. J. Kim,et al.  Single molecule unfolding and stretching of protein domains inside a solid-state nanopore by electric field , 2013, Scientific Reports.

[123]  D. Fass,et al.  Structural basis for intramembrane proteolysis by rhomboid serine proteases , 2007, Proceedings of the National Academy of Sciences.

[124]  B. Roux The calculation of the potential of mean force using computer simulations , 1995 .

[125]  F. Barrantes Cholesterol effects on nicotinic acetylcholine receptor , 2007, Journal of neurochemistry.

[126]  B. Urbanc,et al.  Insights into Aβ aggregation: a molecular dynamics perspective. , 2013, Current topics in medicinal chemistry.

[127]  George Khelashvili,et al.  Quantitative modeling of membrane deformations by multihelical membrane proteins: application to G-protein coupled receptors. , 2011, Biophysical journal.

[128]  A. Caflisch,et al.  Soluble Protofibrils as Metastable Intermediates in Simulations of Amyloid Fibril Degradation Induced by Lipid Vesicles , 2010 .

[129]  David J. Wales,et al.  Energy landscapes of model polyalanines , 2002 .

[130]  Zhe Lu,et al.  Tuning voltage-gated channel activity and cellular excitability with a sphingomyelinase , 2013, The Journal of general physiology.

[131]  Christopher Ing,et al.  Catalysis of Na+ permeation in the bacterial sodium channel NaVAb , 2013, Proceedings of the National Academy of Sciences.

[132]  M. Troll,et al.  Ionic current blockades from DNA and RNA molecules in the alpha-hemolysin nanopore. , 2007, Biophysical journal.

[133]  F. Bezanilla,et al.  Negative Conductance Caused by Entry of Sodium and Cesium Ions into the Potassium Channels of Squid Axons , 1972, The Journal of general physiology.

[134]  Perspectives on: Ion selectivity , 2011, The Journal of general physiology.

[135]  E. Campbell,et al.  Crystal Structure of a Mammalian Voltage-Dependent Shaker Family K+ Channel , 2005, Science.

[136]  David J Wales,et al.  Energy landscapes: some new horizons. , 2010, Current opinion in structural biology.

[137]  David G Schaeffer,et al.  Force distributions in a triangular lattice of rigid bars. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[138]  M. McNamee,et al.  The effect of cholesterol on agonist‐induced flux in reconstituted acetylcholine receptor vesicles , 1980, FEBS letters.

[139]  J. Lambert,et al.  Neurosteroids: endogenous regulators of the GABAA receptor , 2005, Nature Reviews Neuroscience.

[140]  Alastair M. Hosie,et al.  Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites , 2006, Nature.

[141]  Bernard R Brooks,et al.  Modulation of Alzheimer's Aβ protofilament-membrane interactions by lipid headgroups. , 2015, ACS chemical neuroscience.

[142]  M. Wolfe,et al.  Reconstitution of intramembrane proteolysis in vitro reveals that pure rhomboid is sufficient for catalysis and specificity. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[143]  Toby W Allen,et al.  Ion conduction and conformational flexibility of a bacterial voltage-gated sodium channel , 2014, Proceedings of the National Academy of Sciences.

[144]  A. Driessen,et al.  The Lateral Gate of SecYEG Opens during Protein Translocation* , 2009, The Journal of Biological Chemistry.

[145]  Burton J. Litman,et al.  Optimization of Receptor-G Protein Coupling by Bilayer Lipid Composition I , 2001, The Journal of Biological Chemistry.

[146]  Alastair M. Hosie,et al.  Neurosteroid binding sites on GABA(A) receptors. , 2007, Pharmacology & therapeutics.

[147]  B. Poolman,et al.  Disaccharides impact the lateral organization of lipid membranes. , 2014, Journal of the American Chemical Society.

[148]  L. Movileanu,et al.  Excursion of a single polypeptide into a protein pore: simple physics, but complicated biology , 2008, European Biophysics Journal.

[149]  S. Urban,et al.  The rhomboid protease family: a decade of progress on function and mechanism , 2011, Genome Biology.

[150]  Daniel Baum,et al.  Dynamic channels in biomolecular systems: Path analysis and visualization , 2012, 2012 IEEE Symposium on Biological Data Visualization (BioVis).

[151]  D. Tieleman,et al.  Improving Internal Peptide Dynamics in the Coarse-Grained MARTINI Model: Toward Large-Scale Simulations of Amyloid- and Elastin-like Peptides , 2012, Journal of chemical theory and computation.

[152]  S. Cady,et al.  Amantadine-induced conformational and dynamical changes of the influenza M2 transmembrane proton channel , 2008, Proceedings of the National Academy of Sciences.

[153]  D Peter Tieleman,et al.  BMC Biochemistry BioMed Central Research article The molecular basis of electroporation , 2004 .

[154]  R. Mckernan,et al.  Anticonvulsant and adverse effects of avermectin analogs in mice are mediated through the gamma-aminobutyric acid(A) receptor. , 2000, The Journal of pharmacology and experimental therapeutics.

[155]  D. Wales The energy landscape as a unifying theme in molecular science , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[156]  A. Caflisch,et al.  Wild type and mutants of the HET‐s(218–289) prion show different flexibility at fibrillar ends: A simulation study , 2014, Proteins.

[157]  M. R. Rosenberg,et al.  Coexistence of two adamantane binding sites in the influenza A M2 ion channel , 2010, Proceedings of the National Academy of Sciences.

[158]  A. Watts,et al.  Uncovering the intimate relationship between lipids, cholesterol and GPCR activation. , 2011, Current opinion in structural biology.

[159]  Jonathan P. K. Doye,et al.  Stationary points and dynamics in high-dimensional systems , 2003 .

[160]  D. Selkoe,et al.  Aβ Oligomers – a decade of discovery , 2007, Journal of neurochemistry.

[161]  F. Barrantes,et al.  Phospholipid chain immobilization and steroid rotational immobilization in acetylcholine receptor-rich membranes from Torpedo marmorata. , 1981, Biochimica et biophysica acta.

[162]  J. Changeux,et al.  Interaction of the acetylcholine (nicotinic) receptor protein from Torpedo marmorata electric organ with monolayers of pure lipids. , 1978, European journal of biochemistry.

[163]  K. Schulten,et al.  Imaging alpha-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map. , 2005, Biophysical journal.

[164]  M. Sansom,et al.  How Does a Voltage Sensor Interact with a Lipid Bilayer? Simulations of a Potassium Channel Domain , 2007, Structure.

[165]  W. K. Cullen,et al.  Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo , 2002, Nature.

[166]  Stephen H. White,et al.  Experimentally determined hydrophobicity scale for proteins at membrane interfaces , 1996, Nature Structural Biology.

[167]  E. Arutyunova,et al.  Allosteric regulation of rhomboid intramembrane proteolysis , 2014, The EMBO journal.

[168]  A. Shaytan,et al.  Voltage-gated ion channel modulation by lipids: insights from molecular dynamics simulations. , 2014, Biochimica et biophysica acta.

[169]  M. J. Lemieux,et al.  Oligomeric state study of prokaryotic rhomboid proteases. , 2012, Biochimica et biophysica acta.

[170]  J. Gouaux,et al.  Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore , 1996, Science.

[171]  B. Hille,et al.  Regulation of voltage-gated potassium channels by PI(4,5)P2 , 2012, The Journal of general physiology.

[172]  David J Wales,et al.  Simulations of rigid bodies in an angle-axis framework. , 2009, Physical chemistry chemical physics : PCCP.

[173]  Antonina Andreeva,et al.  The structural basis for catalysis and substrate specificity of a rhomboid protease , 2010, The EMBO journal.

[174]  Stefan Howorka,et al.  Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore , 2000, Nature Biotechnology.

[175]  Maarten F. M. Engel Membrane permeabilization by Islet Amyloid Polypeptide. , 2009, Chemistry and physics of lipids.

[176]  J. Dijksman,et al.  Jamming, yielding, and rheology of weakly vibrated granular media. , 2011, Physical review letters.

[177]  D. Wales Discrete path sampling , 2002 .

[178]  Cinque S. Soto,et al.  Structure of the Amantadine Binding Site of Influenza M2 Proton Channels In Lipid Bilayers , 2010, Nature.

[179]  S. White,et al.  Hydrogen bond dynamics in membrane protein function. , 2012, Biochimica et biophysica acta.

[180]  Roderick MacKinnon,et al.  Crystal Structure of the Mammalian GIRK2 K+ Channel and Gating Regulation by G Proteins, PIP2, and Sodium , 2011, Cell.

[181]  S. Khalid,et al.  Modeling and simulations of a bacterial outer membrane protein: OprF from Pseudomonas aeruginosa , 2006, Proteins.

[182]  Christofer S Tautermann,et al.  GPCR structures in drug design, emerging opportunities with new structures. , 2014, Bioorganic & medicinal chemistry letters.

[183]  Daniel Baum,et al.  Interactive Rendering of Materials and Biological Structures on Atomic and Nanoscopic Scale , 2012, Comput. Graph. Forum.

[184]  F. Barrantes,et al.  Cholesterol depletion activates rapid internalization of submicron-sized acetylcholine receptor domains at the cell membrane , 2007, Molecular membrane biology.

[185]  B. Chait,et al.  The structure of the potassium channel: molecular basis of K+ conduction and selectivity. , 1998, Science.

[186]  Florentina Tofoleanu,et al.  Molecular interactions of Alzheimer's Aβ protofilaments with lipid membranes. , 2012, Journal of molecular biology.

[187]  Hans-Christian Hege,et al.  Probabilistic Local Features in Uncertain Vector Fields with Spatial Correlation , 2012, Comput. Graph. Forum.

[188]  M. Klein,et al.  Evolutionary imprint of activation: The design principles of VSDs , 2014, The Journal of general physiology.

[189]  Ilsoo Kim,et al.  Mechanism of potassium-channel selectivity revealed by Na+ and Li+ binding sites within the KcsA pore , 2009, Nature Structural &Molecular Biology.

[190]  F. Barrantes,et al.  Structural basis for lipid modulation of nicotinic acetylcholine receptor function , 2004, Brain Research Reviews.

[191]  G. Hummer,et al.  Structure and dynamics of parallel beta-sheets, hydrophobic core, and loops in Alzheimer's A beta fibrils. , 2007, Biophysical journal.

[192]  Thomas Ertl,et al.  Visual Analysis of Dynamic Protein Cavities and Binding Sites , 2014, 2014 IEEE Pacific Visualization Symposium.

[193]  Bruno Antonny,et al.  Curvature, lipid packing, and electrostatics of membrane organelles: defining cellular territories in determining specificity. , 2012, Developmental cell.

[194]  E. Arutyunova,et al.  Domain swapping in the cytoplasmic domain of the Escherichia coli rhomboid protease. , 2013, Journal of molecular biology.

[195]  Mehran Kardar,et al.  Anomalous dynamics of forced translocation. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[196]  Ana-Nicoleta Bondar,et al.  Coupling of retinal, protein, and water dynamics in squid rhodopsin. , 2010, Biophysical journal.

[197]  Daniel Baum,et al.  Exploring cavity dynamics in biomolecular systems , 2013, BMC Bioinformatics.

[198]  S. Urban,et al.  Architectural and thermodynamic principles underlying intramembrane protease function , 2012, Nature chemical biology.

[199]  Justin A. Lemkul,et al.  The role of molecular simulations in the development of inhibitors of amyloid β-peptide aggregation for the treatment of Alzheimer's disease. , 2012, ACS chemical neuroscience.

[200]  I. Andricioaei,et al.  Similarities between protein folding and granular jamming , 2012, Nature Communications.

[201]  W. Lipscomb,et al.  Structure-guided design of AMP mimics that inhibit fructose-1,6-bisphosphatase with high affinity and specificity. , 2007, Journal of the American Chemical Society.

[202]  Liang Feng,et al.  Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry , 2006, Nature Structural &Molecular Biology.

[203]  Benoit Roux,et al.  On the Importance of Atomic Fluctuations, Protein Flexibility, and Solvent in Ion Permeation , 2004, The Journal of general physiology.

[204]  F. Seno,et al.  Fibril elongation mechanisms of HET‐s prion‐forming domain: Topological evidence for growth polarity , 2011, Proteins.

[205]  J. Hénin,et al.  A predicted binding site for cholesterol on the GABAA receptor. , 2014, Biophysical journal.

[206]  Ron O. Dror,et al.  Mechanism of Voltage Gating in Potassium Channels , 2012, Science.

[207]  Yongcheng Wang,et al.  The role of L1 loop in the mechanism of rhomboid intramembrane protease GlpG. , 2007, Journal of molecular biology.

[208]  C. Etchebest,et al.  Conical lipids in flat bilayers induce packing defects similar to that induced by positive curvature. , 2013, Biophysical journal.

[209]  T. Rapoport Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes , 2007, Nature.

[210]  K. Vinothkumar Structure of Rhomboid Protease in a Lipid Environment , 2011, Journal of molecular biology.

[211]  M. P. Blanton,et al.  Topography of Nicotinic Acetylcholine Receptor Membrane-embedded Domains* , 2000, The Journal of Biological Chemistry.

[212]  P. Focia,et al.  Structures of KcsA in Complex with Symmetrical Quaternary Ammonium Compounds Reveal a Hydrophobic Binding Site , 2014, Biochemistry.

[213]  M. Pastor,et al.  Membrane-Sensitive Conformational States of Helix 8 in the Metabotropic Glu2 Receptor, a Class C GPCR , 2012, PloS one.

[214]  M. .. Moore,et al.  Finite-size scaling at the jamming transition: corrections to scaling and the correlation-length critical exponent. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[215]  M. Bretscher,et al.  Cholesterol and the Golgi apparatus. , 1993, Science.

[216]  Dima Kozakov,et al.  Binding hot spots and amantadine orientation in the influenza a virus M2 proton channel. , 2009, Biophysical journal.

[217]  Alan Grossfield,et al.  A role for direct interactions in the modulation of rhodopsin by ω-3 polyunsaturated lipids , 2006 .

[218]  Toby W Allen,et al.  Local anesthetic and antiepileptic drug access and binding to a bacterial voltage-gated sodium channel , 2014, Proceedings of the National Academy of Sciences.

[219]  Martin Falk,et al.  Atomistic Visualization of Mesoscopic Whole‐Cell Simulations Using Ray‐Casted Instancing , 2013, Comput. Graph. Forum.

[220]  Zoe Cournia,et al.  Structural Characterization and Computer‐Aided Optimization of a Small‐Molecule Inhibitor of the Arp2/3 Complex, a Key Regulator of the Actin Cytoskeleton , 2012, ChemMedChem.

[221]  S. Chowdhury,et al.  Conformational change in rhomboid protease GlpG induced by inhibitor binding to its S' subsites. , 2012, Biochemistry.

[222]  T. Rapoport,et al.  Structure of a complex of the ATPase SecA and the protein-translocation channel , 2008, Nature.

[223]  Mun'delanji C. Vestergaard,et al.  Membrane fusion and vesicular transformation induced by Alzheimer's amyloid beta. , 2013, Biochimica et biophysica acta.

[224]  Cinque S. Soto,et al.  Structural basis for the function and inhibition of an influenza virus proton channel , 2008, Nature.

[225]  D. Wales,et al.  Transmembrane structures for Alzheimer's Aβ(1-42) oligomers. , 2010, Journal of the American Chemical Society.

[226]  A Srinivas Reddy,et al.  Virtual screening in drug discovery -- a computational perspective. , 2007, Current protein & peptide science.

[227]  D. Wales,et al.  Local frustration determines molecular and macroscopic helix structures. , 2013, The journal of physical chemistry. B.

[228]  Sunhwan Jo,et al.  Molecular dynamics and NMR spectroscopy studies of E. coli lipopolysaccharide structure and dynamics. , 2013, Biophysical journal.

[229]  C. Etchebest,et al.  Amphipathic lipid packing sensor motifs: probing bilayer defects with hydrophobic residues. , 2013, Biophysical journal.

[230]  Frank Suits,et al.  Role of cholesterol and polyunsaturated chains in lipid-protein interactions: molecular dynamics simulation of rhodopsin in a realistic membrane environment. , 2005, Journal of the American Chemical Society.

[231]  A. Aksimentiev Deciphering ionic current signatures of DNA transport through a nanopore. , 2010, Nanoscale.

[232]  Amedeo Caflisch,et al.  Amyloid aggregation on lipid bilayers and its impact on membrane permeability. , 2009 .

[233]  K. Hahm,et al.  Protein nanopore-based, single-molecule exploration of copper binding to an antimicrobial-derived, histidine-containing chimera peptide. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[234]  D. Head Critical scaling and aging in cooling systems near the jamming transition. , 2009, Physical review letters.

[235]  D. Tobias,et al.  Dynamics of SecY translocons with translocation-defective mutations. , 2010, Structure.

[236]  Irwin Oppenheim,et al.  Statistical Mechanical Theory of Transport Processes. VII. The Coefficient of Thermal Conductivity of Monatomic Liquids , 1954 .

[237]  B. Roux Influence of the membrane potential on the free energy of an intrinsic protein. , 1997, Biophysical journal.

[238]  P. Keller,et al.  Globular amyloid β‐peptide1−42 oligomer − a homogenous and stable neuropathological protein in Alzheimer's disease , 2005 .

[239]  Michael L. Klein,et al.  Molecular Dynamics Simulations of Voltage-Gated Cation Channels: Insights on Voltage-Sensor Domain Function and Modulation , 2012, Front. Pharmacol..

[240]  Jacco H Snoeijer,et al.  Ensemble theory for force networks in hyperstatic granular matter. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[241]  R. Swendsen,et al.  THE weighted histogram analysis method for free‐energy calculations on biomolecules. I. The method , 1992 .

[242]  Peter Olsson,et al.  Critical scaling of shear viscosity at the jamming transition. , 2007, Physical review letters.

[243]  F. G. van der Goot,et al.  Dynamics of unfolded protein transport through an aerolysin pore. , 2011, Journal of the American Chemical Society.

[244]  I. Martin,et al.  Solubilisation of the γ‐Aminobutyric Acid/Benzodiazepine Receptor from Rat Cerebellum: Optimal Preservation of the Modulatory Responses by Natural Brain Lipids , 1987, Journal of neurochemistry.

[245]  F. Barrantes,et al.  Functional properties of the acetylcholine receptor incorporated in model lipid membranes. Differential effects of chain length and head group of phospholipids on receptor affinity states and receptor-mediated ion translocation. , 1984, The Journal of biological chemistry.

[246]  M. J. Lemieux,et al.  Insights into substrate gating in H. influenzae rhomboid. , 2011, Journal of molecular biology.

[247]  J. Danielsson,et al.  The Alzheimer beta-peptide shows temperature-dependent transitions between left-handed 3-helix, beta-strand and random coil secondary structures. , 2005, The FEBS journal.

[248]  Eduardo Perozo,et al.  Structural mechanism of C-type inactivation in K+ channels , 2010, Nature.

[249]  Shirley Y. Lee,et al.  A partially folded structure of amyloid-beta(1-40) in an aqueous environment. , 2011, Biochemical and biophysical research communications.

[250]  David J Wales,et al.  Energy landscapes for diffusion: analysis of cage-breaking processes. , 2008, The Journal of chemical physics.

[251]  Amedeo Caflisch,et al.  Interpreting the aggregation kinetics of amyloid peptides. , 2006, Journal of molecular biology.

[252]  R. MacKinnon,et al.  Crystal Structure of the Human K2P TRAAK, a Lipid- and Mechano-Sensitive K+ Ion Channel , 2012, Science.

[253]  R. Dutzler,et al.  X-ray structure of a prokaryotic pentameric ligand-gated ion channel , 2008, Nature.

[254]  D. Middlemas,et al.  Identification of subunits of acetylcholine receptor that interact with a cholesterol photoaffinity probe. , 1987, Biochemistry.

[255]  R. D'Hooge,et al.  Lipids revert inert Aβ amyloid fibrils to neurotoxic protofibrils that affect learning in mice , 2007, The EMBO Journal.

[256]  Yongcheng Wang,et al.  Open-cap conformation of intramembrane protease GlpG , 2007, Proceedings of the National Academy of Sciences.

[257]  Yongcheng Wang,et al.  Crystal structure of a rhomboid family intramembrane protease , 2006, Nature.

[258]  M. Brown,et al.  Modulation of Rhodopsin Function by Properties of the Membrane Bilayer , 2022 .

[259]  M. Simmonds,et al.  Effects of membrane cholesterol on the sensitivity of the GABAA receptor to GABA in acutely dissociated rat hippocampal neurones , 2001, Neuropharmacology.

[260]  Gerhard Hummer,et al.  Structure and Dynamics of Parallel β-Sheets, Hydrophobic Core, and Loops in Alzheimer's Aβ Fibrils , 2007 .

[261]  David J Wales,et al.  Helix self-assembly from anisotropic molecules. , 2007, Physical review letters.

[262]  M. James,et al.  The crystal structure of the rhomboid peptidase from Haemophilus influenzae provides insight into intramembrane proteolysis , 2007, Proceedings of the National Academy of Sciences.

[263]  F. Barrantes,et al.  Immobilized lipid in acetylcholine receptor-rich membranes from Torpedo marmorata. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[264]  David J. Wales,et al.  Energy landscapes: calculating pathways and rates , 2006 .

[265]  J. Santiago,et al.  Probing the Effects of Membrane Cholesterol in the Torpedo californica Acetylcholine Receptor and the Novel Lipid-exposed Mutation αC418W in XenopusOocytes* , 2001, The Journal of Biological Chemistry.

[266]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[267]  Sergei Yu Noskov,et al.  Evaluations of the Absolute and Relative Free Energies for Antidepressant Binding to the Amino Acid Membrane Transporter LeuT with Free Energy Simulations. , 2010, Journal of chemical theory and computation.

[268]  S. White,et al.  Rhomboid protease dynamics and lipid interactions. , 2009, Structure.

[269]  M. Raftery,et al.  The role of lipids in the function of the acetylcholine receptor. , 1985, Journal of receptor research.

[270]  H. Zemkova,et al.  Effect of ivermectin on gamma-aminobutyric acid-induced chloride currents in mouse hippocampal embryonic neurones. , 1994, European journal of pharmacology.

[271]  H. Attrill,et al.  The role of cholesterol on the activity and stability of neurotensin receptor 1. , 2012, Biochimica et biophysica acta.

[272]  J. Betton,et al.  Unfolding of proteins and long transient conformations detected by single nanopore recording. , 2007, Physical review letters.

[273]  P. Derreumaux Coarse-grained models for protein folding and aggregation. , 2013, Methods in molecular biology.

[274]  David J Wales,et al.  Thermodynamics and kinetics of aggregation for the GNNQQNY peptide. , 2007, Journal of the American Chemical Society.

[275]  G. Gimpl,et al.  Regulation of receptor function by cholesterol , 2000, Cellular and Molecular Life Sciences CMLS.

[276]  Zhe Lu,et al.  Removal of phospho-head groups of membrane lipids immobilizes voltage sensors of K+ channels , 2008, Nature.

[277]  Z. Cournia,et al.  Free Energy Calculations Reveal the Origin of Binding Preference for Aminoadamantane Blockers of Influenza A/M2TM Pore. , 2013, Journal of chemical theory and computation.

[278]  Amedeo Caflisch,et al.  Computational models for the prediction of polypeptide aggregation propensity. , 2006, Current opinion in chemical biology.

[279]  Jean-Louis Barrat,et al.  Jamming transition as probed by quasistatic shear flow. , 2009, Physical review letters.