Band-limited contrast in natural images explains the detectability of changes in the amplitude spectra

[1]  F. Campbell,et al.  Orientational selectivity of the human visual system , 1966, The Journal of physiology.

[2]  C Blakemore,et al.  On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images , 1969, The Journal of physiology.

[3]  Visual pigments from different parts of the retina in rudd and trout. , 1971, Vision research.

[4]  N. Graham,et al.  Detection of grating patterns containing two spatial frequencies: a comparison of single-channel and multiple-channels models. , 1971, Vision research.

[5]  F A Bilsen,et al.  The influence of the number of cycles upon the visual contrast threshold for spatial sine wave patterns. , 1974, Vision research.

[6]  J Nachmias,et al.  Letter: Grating contrast: discrimination may be better than detection. , 1974, Vision research.

[7]  T. A. Reichert,et al.  The absence of a measurable “critical band” at low suprathreshold contrasts , 1976, Vision Research.

[8]  M. A. Bouman,et al.  Perimetry of contrast detection thresholds of moving spatial sine wave patterns. III. The target extent as a sensitivity controlling parameter. , 1978, Journal of the Optical Society of America.

[9]  D. Tolhurst,et al.  Interactions between spatial frequency channels , 1978, Vision Research.

[10]  J. Movshon,et al.  Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex. , 1978, The Journal of physiology.

[11]  A. Watson Probability summation over time , 1979, Vision Research.

[12]  Hugh R. Wilson,et al.  Orientation selectivity of the human visual system (A) , 1980 .

[13]  J. M. Foley,et al.  Contrast masking in human vision. , 1980, Journal of the Optical Society of America.

[14]  G. Legge A power law for contrast discrimination , 1981, Vision Research.

[15]  J. Robson,et al.  Probability summation and regional variation in contrast sensitivity across the visual field , 1981, Vision Research.

[16]  D. Tolhurst,et al.  On the variety of spatial frequency selectivities shown by neurons in area 17 of the cat , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[17]  C. A. Dvorak,et al.  Detection and discrimination of blur in edges and lines , 1981 .

[18]  S. Laughlin,et al.  Predictive coding: a fresh view of inhibition in the retina , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[19]  Andrew C. Sleigh,et al.  Physical and Biological Processing of Images , 1983 .

[20]  S. Laughlin,et al.  Matching Coding to Scenes to Enhance Efficiency , 1983 .

[21]  R. Watt,et al.  The recognition and representation of edge blur: Evidence for spatial primitives in human vision , 1983, Vision Research.

[22]  C. Enroth-Cugell,et al.  Chapter 9 Visual adaptation and retinal gain controls , 1984 .

[23]  G. J. Burton,et al.  Color and spatial structure in natural scenes. , 1987, Applied optics.

[24]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[25]  W. N. Charman,et al.  Visual sensitivity to temporal change in focus and its relevance to the accommodation response , 1988, Vision Research.

[26]  David J. Field,et al.  What The Statistics Of Natural Images Tell Us About Visual Coding , 1989, Photonics West - Lasers and Applications in Science and Engineering.

[27]  A. B. Bonds Role of Inhibition in the Specification of Orientation Selectivity of Cells in the Cat Striate Cortex , 1989, Visual Neuroscience.

[28]  R F Hess,et al.  How are spatial filters used in fovea and parafovea? , 1989, Journal of the Optical Society of America. A, Optics and image science.

[29]  D. Field,et al.  Human discrimination of fractal images. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[30]  E. Peli Contrast in complex images. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[31]  D. Tolhurst,et al.  Amplitude spectra of natural images. , 1992, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[32]  Gavin J. Brelstaff,et al.  Information content of natural scenes: implications for neural coding of color and luminance , 1992, Electronic Imaging.

[33]  Joseph J. Atick,et al.  What Does the Retina Know about Natural Scenes? , 1992, Neural Computation.

[34]  I. Ohzawa,et al.  Organization of suppression in receptive fields of neurons in cat visual cortex. , 1992, Journal of neurophysiology.

[35]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[36]  D. Tolhurst,et al.  Amplitude spectra of natural images , 1992 .

[37]  D. Tolhurst,et al.  Discrimination of changes in the second-order statistics of natural and synthetic images , 1994, Vision Research.

[38]  M. Georgeson,et al.  Perceived contrast of gratings and plaids: Non-linear summation across oriented filters , 1994, Vision Research.

[39]  Jyrki Rovamo,et al.  Contrast matching of two-dimensional compound gratings , 1994, Vision Research.

[40]  David J. Tolhurst,et al.  Detection of changes in the amplitude spectra of natural images is explained by a band-limited local-contrast model , 1996, Electronic Imaging.

[41]  D. Heeger,et al.  Comparison of contrast-normalization and threshold models of the responses of simple cells in cat striate cortex , 1997, Visual Neuroscience.

[42]  J. Anthony Movshon,et al.  Linearity and gain control in V1 simple cells , 1999 .

[43]  RussLL L. Ds Vnlos,et al.  SPATIAL FREQUENCY SELECTIVITY OF CELLS IN MACAQUE VISUAL CORTEX , 2022 .