Experimental Study of Natural Gas Combustion Flue Gas Waste Heat Recovery System Based on Direct Contact Heat Transfer and Absorption Heat Pump

Condensing boiler for flue gas waste heat recovery is widely used in industries. In order to gain a portion of the sensible heat and latent heat of the vapor in the flue gas, the flue gas is cooled by return water of district heating through a condensation heat exchanger which is located at the end of flue. At low ambient air temperature, some boilers utilize the air pre-heater, which makes air be heated before entering the boiler, and also recovers part of the waste heat of flue gas. However, there are some disadvantages for these technologies. For the former one, the low temperature of the return water is required while the utilization of flue gas heat for the latter one is very limited. A new flue gas condensing heat recovery system is developed, in which direct contact heat exchanger and absorption heat pump are integrated with the gas boiler to recover condensing heat, even the temperature of the return water is so low that the latent heat of vapor in the flue gas could not be recovered directly by the general condensing technologies. Direct contact condensation occurs when vapor in the flue gas contacts and condenses on cold liquid directly. Due to the absence of a solid boundary between the phases, transport processes at the phase interface are much more efficient and quite different from condensation phenomena on a solid surface. Additionally, the surface heat exchanger tends to be more bulky and expensive. In this study, an experimental platform of the new system is built, and a variety of experimental conditions are carried out. Through the analysis of the experimental data and operational state, the total thermal efficiency of the platform will be increased 3.9%, and the system is reliable enough to be popularized.Copyright © 2013 by ASME