A Study in Employing Rough Set Based Approach for Clustering on Categorical Time-Evolving Data
暂无分享,去创建一个
[1] Sudipto Guha,et al. ROCK: a robust clustering algorithm for categorical attributes , 1999, Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337).
[2] S. Viswanadha Raju,et al. Clustering of Concept Drift Categorical Data Using Our-NIR Method , 2011 .
[3] Cungen Cao,et al. A rough set approach to outlier detection , 2008, Int. J. Gen. Syst..
[4] K. V. N. Sunitha,et al. Our - NIR : Node Importance Representative for Clustering of Categorical Data , 2011 .
[5] Michael K. Ng,et al. A fuzzy k-modes algorithm for clustering categorical data , 1999, IEEE Trans. Fuzzy Syst..
[6] Mark A. Gluck,et al. Information, Uncertainty and the Utility of Categories , 1985 .
[7] Anil K. Jain,et al. Data clustering: a review , 1999, CSUR.
[8] Philip S. Yu,et al. Fast algorithms for projected clustering , 1999, SIGMOD '99.
[9] Sudipto Guha,et al. Clustering Data Streams: Theory and Practice , 2003, IEEE Trans. Knowl. Data Eng..
[10] Charles Elkan,et al. Scalability for clustering algorithms revisited , 2000, SKDD.
[11] Petra Perner,et al. Data Mining - Concepts and Techniques , 2002, Künstliche Intell..
[12] Ralf Klinkenberg,et al. Using Labeled and Unlabeled Data to Learn Drifting Concepts , 2007 .
[13] Jiye Liang,et al. A new measure of uncertainty based on knowledge granulation for rough sets , 2009, Inf. Sci..
[14] Jiawei Han,et al. CLARANS: A Method for Clustering Objects for Spatial Data Mining , 2002, IEEE Trans. Knowl. Data Eng..
[15] Michael R. Anderberg,et al. Cluster Analysis for Applications , 1973 .
[16] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[17] Yi Li,et al. COOLCAT: an entropy-based algorithm for categorical clustering , 2002, CIKM '02.
[18] Anil K. Jain,et al. Algorithms for Clustering Data , 1988 .
[19] Ming-Syan Chen,et al. Catching the Trend: A Framework for Clustering Concept-Drifting Categorical Data , 2009, IEEE Transactions on Knowledge and Data Engineering.
[20] Paul S. Bradley,et al. Scaling Clustering Algorithms to Large Databases , 1998, KDD.
[21] Jon M. Kleinberg,et al. Clustering categorical data: an approach based on dynamical systems , 2000, The VLDB Journal.
[22] Ming-Syan Chen,et al. Labeling unclustered categorical data into clusters based on the important attribute values , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).
[23] Peter J. Rousseeuw,et al. Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .
[24] Philip S. Yu,et al. A Framework for Clustering Evolving Data Streams , 2003, VLDB.
[25] C. E. SHANNON,et al. A mathematical theory of communication , 1948, MOCO.
[26] Johannes Gehrke,et al. CACTUS—clustering categorical data using summaries , 1999, KDD '99.
[27] Renée J. Miller,et al. LIMBO: Scalable Clustering of Categorical Data , 2004, EDBT.
[28] Sudipto Guha,et al. CURE: an efficient clustering algorithm for large databases , 1998, SIGMOD '98.
[29] Ali S. Hadi,et al. Finding Groups in Data: An Introduction to Chster Analysis , 1991 .
[30] Tian Zhang,et al. BIRCH: an efficient data clustering method for very large databases , 1996, SIGMOD '96.