Newton's Method for Underdetermined Systems of Equations Under the γ-Condition

The convergence criterion of Newton's method for underdetermined system of equations under the γ-condition is established and the radius of the convergence ball is obtained. Applications to analytic operator are provided and some results due to Shub and Smale (SIAM J. Numer. Anal. 1996, 33:128–148) are extended and improved.

[1]  Chong Li,et al.  Newton's method on Riemannian manifolds: Smale's point estimate theory under the γ-condition , 2006 .

[2]  S. Smale,et al.  Complexity of Bezout's theorem IV: probability of success; extensions , 1996 .

[3]  S. Smale Newton’s Method Estimates from Data at One Point , 1986 .

[4]  Wang Xinghua,et al.  Convergence of Newton's method and inverse function theorem in Banach space , 1999 .

[5]  Chong Li,et al.  Convergence of Newton's Method and Uniqueness of the Solution of Equations in Banach Spaces II , 2003 .

[6]  S. Smale,et al.  Complexity of Bézout’s theorem. I. Geometric aspects , 1993 .

[7]  Chong Li,et al.  Convergence and uniqueness properties of Gauss-Newton's method , 2004 .

[8]  M. Z. Nashed,et al.  Convergence of Newton-like methods for singular operator equations using outer inverses , 1993 .

[9]  Xinghua Wang,et al.  Convergence of Newton's method and inverse function theorem in Banach space , 1999, Math. Comput..

[10]  Joel Friedman,et al.  On the convergence of newton's method , 1989, J. Complex..

[11]  Michael Shub,et al.  Multihomogeneous Newton methods , 2000, Math. Comput..

[12]  Myong-Hi Kim,et al.  Newton's Method for Analytic Systems of Equations with Constant Rank Derivatives , 2002, J. Complex..

[13]  Michael Shub,et al.  Newton's method for overdetermined systems of equations , 2000, Math. Comput..

[14]  Steve Smale,et al.  Complexity theory and numerical analysis , 1997, Acta Numerica.

[15]  M. Nashed Inner, outer, and generalized inverses in banach and hilbert spaces , 1987 .

[16]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[17]  V. N. Bogaevski,et al.  Matrix Perturbation Theory , 1991 .

[18]  Eugene L. Allgower,et al.  Continuation and path following , 1993, Acta Numerica.

[19]  Xinghua Wang,et al.  Convergence of Newton's method and uniqueness of the solution of equations in Banach space , 2000 .

[20]  Henryk Wozniakowski,et al.  Convergence and Complexity of Newton Iteration for Operator Equations , 1979, JACM.

[21]  Adi Ben-Israel,et al.  Generalized inverses: theory and applications , 1974 .

[22]  S. Smale The fundamental theorem of algebra and complexity theory , 1981 .

[23]  Xu,et al.  CONVERGENCE OF NEWTON'S METHOD FOR SYSTEMS OF EQUATIONS WITH CONSTANT RANK DERIVATIVES * , 2007 .

[24]  Timothy H. McNicholl Review of "Complexity and real computation" by Blum, Cucker, Shub, and Smale. Springer-Verlag. , 2001, SIGA.

[25]  Xinghua Wang,et al.  Local and global behavior for algorithms of solving equations , 2001 .