NEW MODELS FOR MARKOV RANDOM FIELDS
暂无分享,去创建一个
The Hammersley-Clifford theorem gives the form that the joint probability density (or mass) function of a Markov random field must take. Its exponent must be a sum of functions of variables, where each function in the summand involves only those variables whose sites form a clique. From a statistical modeling point of view, it is important to establish the converse result, namely, to give the conditional probability specifications that yield a Markov random field. Besag (1974) addressed this question by developing a one-parameter exponential family of conditional probability models. In this article, we develop new models for Markov random fields by establishing sufficient conditions forthe conditional probability specifications to yield a Markov random field.
[1] J. M. Hammersley,et al. Markov fields on finite graphs and lattices , 1971 .
[2] Noel A Cressie,et al. Statistics for Spatial Data. , 1992 .
[3] J. Besag. Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .