The formation of chondrules by open-system melting of nebular condensates

[1]  C. Alexander,et al.  Chemical equilibrium and kinetic constraints for chondrule and CAI formation conditions , 2004 .

[2]  F. Richter Time Scales for Elemental and Isotopic Fractionation by Evaporation and Condensation , 2003 .

[3]  R. Hewins,et al.  Experimental study of evaporation and isotopic mass fractionation of potassium in silicate melts , 2003 .

[4]  R. Hewins,et al.  Evaporation Loss of Light Elements as a Function of Cooling Rate: Logarithmic Law , 2003 .

[5]  G. Libourel,et al.  Gas‐melt interactions and their bearing on chondrule formation , 2002 .

[6]  D. Kuroda,et al.  The reaction of forsterite with hydrogen-its apparent and real temperature dependences , 2002 .

[7]  S. Desch,et al.  A model of the thermal processing of particles in solar nebula shocks: Application to the cooling rates of chondrules , 2002 .

[8]  A. Davis,et al.  Elemental and isotopic fractionation of Type B calcium-, aluminum-rich inclusions: experiments, theoretical considerations, and constraints on their thermal evolution , 2002 .

[9]  A. Galy,et al.  Iron Isotope Cosmochemistry: High-Precision Isotope Ratio Measurement Using MC-ICPMS , 2001 .

[10]  K. Keil,et al.  A new astrophysical setting for chondrule formation. , 2001, Science.

[11]  C. Alexander,et al.  Iron isotopes in chondrules: Implications for the role of evaporation during chondrule formation , 2001 .

[12]  R. Clayton,et al.  Chemical and isotopic fractionation during the evaporation of the FeO-MgO-SiO2-CaO-Al2O3-TiO2 rare earth element melt system , 2001 .

[13]  K. Keil,et al.  The condensation origin of zoned metal grains in Queen Alexandra Range 94411: Implications for the formation of the Bencubbin‐like chondrites , 2001 .

[14]  G. Libourel,et al.  Experimental constraints on alkali condensation in chondrule formation , 2000 .

[15]  H. Nagahara,et al.  Isotopic fractionation as a probe of heating processes in the solar nebula , 2000 .

[16]  M. Bourot‐Denise,et al.  The lack of potassium‐isotopic fractionation in Bishunpur chondrules , 2000 .

[17]  H. Nagahara,et al.  The Role of Back Reaction on Chemical Fractionation During Evaporation of a Condensed Phase , 2000 .

[18]  H. Palme,et al.  Refractory forsterite in primitive meteorites: Condensates from the solar nebula? , 2000 .

[19]  D. Ebel,et al.  Condensation in dust-enriched systems , 2023, 2307.00641.

[20]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[21]  A. Tsuchiyama,et al.  Evaporation of forsterite in the primordial solar nebula; rates and accompanied isotopic fractionation , 1999 .

[22]  G. Libourel Systematics of calcium partitioning between olivine and silicate melt: implications for melt structure and calcium content of magmatic olivines , 1999 .

[23]  J. Cuzzi,et al.  Turbulence, Chondrules, and Planetesimals , 1998 .

[24]  R. Hewins,et al.  Transient Heating and Chondrule Formation: Evidence From Sodium Loss in Flash Heating Simulation Experiments , 1998 .

[25]  M. Bourot‐Denise,et al.  Do nebular fractionations, evaporative losses, or both, influence chondrule compositions? , 1997 .

[26]  D. Ebel,et al.  Direct Condensation of Ferromagnesian Liquids from Cosmic Gases , 1997 .

[27]  Tezer M. Bat Comment on “Potassium isotope cosmochemistry: Genetic implications of volatile element depletion” by Munir Humayun and R. N. Clayton , 1996 .

[28]  R. Jones FeO-rich, porphyritic pyroxene chondrules in unequilibrated ordinary chondrites , 1996 .

[29]  D. Sears,et al.  Chondrules: Their Diversity and the Role of Open-System Processes during Their Formation , 1996 .

[30]  C. Floss,et al.  Elemental and isotopic fractionations produced through evaporation of the Allende CV chondrilte: Implications for the origin of HAL-type hibonite inclusions , 1996 .

[31]  H. Nagahara,et al.  Evaporation of forsterite in H2 gas , 1996 .

[32]  J. Grossman Chemical fractionations of chondrites: signatures of events before chondrule formation. , 1996 .

[33]  E. Scott,et al.  Formation of chondrules and chondrites in the protoplanetary nebula. , 1996 .

[34]  A. Boss A concise guide to chondrule formation models. , 1996 .

[35]  R. Clayton,et al.  Potassium isotope cosmochemistry: Genetic implications of volatile element depletion , 1995 .

[36]  R. Jones Petrology of FeO-poor, porphyritic pyroxene chondrules in the Semarkona chondrite , 1994 .

[37]  C. Alexander,et al.  Trace element distributions within ordinary chondrite chondrules: Implications for chondrule formation conditions and precursors , 1994 .

[38]  K. Govindaraju,et al.  1994 REPORT ON ZINNWALDITE ZW‐C ANALYSED BY NINETY‐TWO GIT‐IWG MEMBER‐LABORATORIES , 1994 .

[39]  D. Sears,et al.  Open-system behavior during chondrule formation , 1994 .

[40]  K. Govindaraju,et al.  1994 compilation of working values and sample description for 383 geostandards , 1994 .

[41]  J. Wood,et al.  Mineral equilibrium in fractionated nebular systems , 1993 .

[42]  D. Sears,et al.  Thermoluminescence and compositional zoning in the mesostasis of a Semarkona group A1 chondrule and new insights into the chondrule-forming process , 1992 .

[43]  R. Jones On the relationship between isolated and chondrule olivine grains in the carbonaceous chondrite ALHA77307 , 1992 .

[44]  R. Hewins Retention of sodium during chondrule melting , 1991 .

[45]  E. Jarosewich,et al.  Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses , 1990 .

[46]  R. Clayton,et al.  Isotope mass fractionation during evaporation of Mg2Si04 , 1990, Nature.

[47]  T. Köhler,et al.  Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60 kb with applications , 1990 .

[48]  Rhian H. Jones,et al.  Petrology and mineralogy of Type II, FeO-rich chondrules in Semarkona (LL3.0) - Origin by closed-system fractional crystallization, with evidence for supercooling , 1990 .

[49]  G. Lofgren Dynamic cyrstallization of chondrule melts of porphyritic olivine composition: Textures experimental and natural , 1989 .

[50]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[51]  E. Watson,et al.  Cations in olivine, Part 2: Diffusion in olivine xenocrysts, with applications to petrology and mineral physics , 1988 .

[52]  E. A. King,et al.  Properties of chondrules , 1988 .

[53]  I. Steele Compositions and textures of relic forsterite in carbonaceous and unequilibrated ordinary chondrites , 1986 .

[54]  R. Clayton,et al.  Isotopic variations in solar system material: evaporation and condensation of silicates. , 1985 .

[55]  J. Wood Meteoritic constraints on processes in the solar nebula , 1984 .

[56]  G. J. Taylor,et al.  Chondrules and other components in C, O, and E chondrites: Similarities in their properties and origins , 1983 .

[57]  A. Hashimoto Evaporation metamorphism in the early solar nebula. Evaporation experiments on the melt FeO-MgO-SiO2-CaO-Al2O3 and chemical fractionations of primitive materials. , 1983 .

[58]  Jeffrey N. Grossman,et al.  Refractory precursor components of Semarkona chondrules and the fractionation of refractory elements among chondrites , 1983 .

[59]  Lunar,et al.  Chondrules and their origins , 1983 .

[60]  P. K. Kuroda Abundance of the Elements , 1982 .

[61]  A. Tsuchiyama,et al.  Volatilization of sodium from silicate melt spheres and its application to the formation of chondrules , 1981 .

[62]  C. Herzberg The solubility of olivine in basaltic liquids: an ionic model , 1979 .

[63]  H. McSween Chemical and petrographic constraints on the origin of chondrules and inclusions in carbonaceous chondrites , 1977 .

[64]  H. McSween On the nature and origin of isolated olivine grains in carbonaceous chondrites , 1977 .

[65]  E. Anders,et al.  Meteorites and the Early Solar System , 1971 .

[66]  J. Katz,et al.  Condensation of primordial dust , 1967 .

[67]  J. Larimer Chemical fractionations in meteorites—I. Condensation of the elements , 1967 .