Further development of biomarkers in amyotrophic lateral sclerosis

ABSTRACT Introduction: Amyotrophic lateral sclerosis (ALS) is an idiopathic neurodegenerative disease usually fatal in less than three years. Even if standard guidelines are available to diagnose ALS, the mean diagnosis delay is more than one year. In this context, biomarker discovery is a priority. Research has to focus on new diagnostic tools, based on combined explorations. Areas covered: In this review, we specifically focus on biology and imaging markers. We detail the innovative field of ‘omics’ approach and imaging and explain their limits to be useful in routine practice. We describe the most relevant biomarkers and suggest some perspectives for biomarker research. Expert commentary: The successive failures of clinical trials in ALS underline the need for new strategy based on innovative tools to stratify patients and to evaluate their responses to treatment. Biomarker data may be useful to improve the designs of clinical trials. Biomarkers are also needed to better investigate disease pathophysiology, to identify new therapeutic targets, and to improve the performance of clinical assessments for diagnosis and prognosis in the clinical setting. A consensus on the best management of neuroimaging and ‘omics’ methods is necessary and a systematic independent validation of findings may add robustness to future studies.

[1]  P. Nilsson,et al.  Neuroproteomic profiling of human body fluids , 2016, Proteomics. Clinical applications.

[2]  Yan Yang,et al.  Meta-analysis of the relationship between amyotrophic lateral sclerosis and susceptibility to serum ferritin level elevation , 2016, Neurosciences.

[3]  H. Benali,et al.  Impairment of sensory-motor integration at spinal level in amyotrophic lateral sclerosis , 2016, Clinical Neurophysiology.

[4]  P. Vourc'h,et al.  Metabolomics in amyotrophic lateral sclerosis: how far can it take us? , 2016, European journal of neurology.

[5]  J. Loeffler,et al.  The Role of Skeletal Muscle in Amyotrophic Lateral Sclerosis , 2016, Brain pathology.

[6]  T. Wieland,et al.  Screening for CHCHD10 mutations in a large cohort of sporadic ALS patients: no evidence for pathogenicity of the p.P34S variant. , 2016, Brain : a journal of neurology.

[7]  P. Andersen,et al.  Increased functional connectivity common to symptomatic amyotrophic lateral sclerosis and those at genetic risk , 2016, Journal of Neurology, Neurosurgery & Psychiatry.

[8]  C. van Broeckhoven,et al.  Loss of TBK1 is a frequent cause of frontotemporal dementia in a Belgian cohort , 2015, Neurology.

[9]  E. Génin,et al.  CHCHD10 mutations promote loss of mitochondrial cristae junctions with impaired mitochondrial genome maintenance and inhibition of apoptosis , 2015, EMBO molecular medicine.

[10]  M. Marshall,et al.  Novel TBK1 truncating mutation in a familial amyotrophic lateral sclerosis patient of Chinese origin , 2015, Neurobiology of Aging.

[11]  M. P. van den Heuvel,et al.  Brain morphologic changes in asymptomatic C9orf72 repeat expansion carriers , 2015, Neurology.

[12]  P. Andersen,et al.  Neurofilament levels as biomarkers in asymptomatic and symptomatic familial amyotrophic lateral sclerosis , 2015, Annals of neurology.

[13]  V. Meininger,et al.  [TBK1 gene stresses the major role of autophagy in ALS]. , 2015, Revue neurologique.

[14]  B. Dubois,et al.  TBK1 mutation frequencies in French frontotemporal dementia and amyotrophic lateral sclerosis cohorts , 2015, Neurobiology of Aging.

[15]  P. Couratier,et al.  Mutation TBK1 : un argument majeur pour le rôle de l’autophagie dans la SLA , 2015 .

[16]  H. Sasaki,et al.  Identification of plasma microRNAs as a biomarker of sporadic Amyotrophic Lateral Sclerosis , 2015, Molecular Brain.

[17]  P. Vourc'h,et al.  Biological follow‐up in amyotrophic lateral sclerosis: decrease in creatinine levels and increase in ferritin levels predict poor prognosis , 2015, European journal of neurology.

[18]  Ki-Wook Oh,et al.  Prognostic Role of Serum Levels of Uric Acid in Amyotrophic Lateral Sclerosis , 2015, Journal of clinical neurology.

[19]  L. Wilkins Neurofilament light chain: A prognostic biomarker in amyotrophic lateral sclerosis , 2015, Neurology.

[20]  P. Andersen,et al.  Neurofilaments in the diagnosis of motoneuron diseases: a prospective study on 455 patients , 2015, Journal of Neurology, Neurosurgery & Psychiatry.

[21]  T. Kanda,et al.  CSF cytokine profile distinguishes multifocal motor neuropathy from progressive muscular atrophy , 2015, Neurology: Neuroimmunology & Neuroinflammation.

[22]  Nathan D Price,et al.  Transparency in metabolic network reconstruction enables scalable biological discovery. , 2015, Current opinion in biotechnology.

[23]  À. López-López,et al.  UNC13A confers risk for sporadic ALS and influences survival in a Spanish cohort , 2015, Journal of Neurology.

[24]  Jonas Bergquist,et al.  Neuroproteomics tools in clinical practice. , 2015, Biochimica et biophysica acta.

[25]  T. Zesiewicz,et al.  Humoral factors in ALS patients during disease progression , 2015, Journal of Neuroinflammation.

[26]  M. Turner,et al.  CSF neurofilament light chain reflects corticospinal tract degeneration in ALS , 2015, Annals of clinical and translational neurology.

[27]  B. Traynor,et al.  Genetic causes of amyotrophic lateral sclerosis: New genetic analysis methodologies entailing new opportunities and challenges , 2015, Brain Research.

[28]  R. Bowser,et al.  Use of biomarkers in ALS drug development and clinical trials , 2015, Brain Research.

[29]  Kevin F. Bieniek,et al.  Whole-genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease , 2015, Acta Neuropathologica.

[30]  Xusheng Huang,et al.  Measurement of cystatin C levels in the cerebrospinal fluid of patients with amyotrophic lateral sclerosis. , 2015, International journal of clinical and experimental pathology.

[31]  A. Chase Motor neuron disease: Loss-of-function mutations in TBK1 can cause familial ALS , 2015, Nature Reviews Neurology.

[32]  T. Wieland,et al.  Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia , 2015, Nature Neuroscience.

[33]  K. M. Steinberg,et al.  Exome sequencing of case-unaffected-parents trios reveals recessive and de novo genetic variants in sporadic ALS , 2015, Scientific Reports.

[34]  A. Chiò,et al.  Motor neuron disease in 2014: Biomarkers for ALS—in search of the Promised Land , 2015, Nature Reviews Neurology.

[35]  H. Benali,et al.  Electrophysiological and spinal imaging evidences for sensory dysfunction in amyotrophic lateral sclerosis , 2015, BMJ Open.

[36]  M. Copetti,et al.  Cerebrospinal fluid neurofilament light chain levels: marker of progression to generalized amyotrophic lateral sclerosis , 2015, European journal of neurology.

[37]  M. Filippi,et al.  Neuroimaging in amyotrophic lateral sclerosis: insights into structural and functional changes , 2014, The Lancet Neurology.

[38]  E. Génin,et al.  Reply: Mutations in the CHCHD10 gene are a common cause of familial amyotrophic lateral sclerosis. , 2014, Brain : a journal of neurology.

[39]  M. Benatar,et al.  Ensuring continued progress in biomarkers for amyotrophic lateral sclerosis , 2014, Muscle & nerve.

[40]  H. Mitsumoto,et al.  Clinical trials in amyotrophic lateral sclerosis: why so many negative trials and how can trials be improved? , 2014, The Lancet Neurology.

[41]  M. Blitterswijk,et al.  Excess of Rare Damaging TUBA4A Variants Suggests Cytoskeletal Defects in ALS , 2014, Neuron.

[42]  R. Daneshjou,et al.  Targeted Exon Capture and Sequencing in Sporadic Amyotrophic Lateral Sclerosis , 2014, PLoS genetics.

[43]  R. Sorge,et al.  Smads as muscle biomarkers in amyotrophic lateral sclerosis , 2014, Annals of clinical and translational neurology.

[44]  Matthew C Kiernan,et al.  Quantifying Disease Progression in Amyotrophic Lateral Sclerosis , 2014, Annals of neurology.

[45]  M. Kiernan,et al.  Biomarkers and future targets for development in amyotrophic lateral sclerosis. , 2014, Current medicinal chemistry.

[46]  Adriano Chiò,et al.  Functional pattern of brain FDG-PET in amyotrophic lateral sclerosis , 2014, Neurology.

[47]  Peter K. Todd,et al.  Discovery of a Biomarker and Lead Small Molecules to Target r(GGGGCC)-Associated Defects in c9FTD/ALS , 2014, Neuron.

[48]  A. Chiò,et al.  Amyotrophic lateral sclerosis outcome measures and the role of albumin and creatinine: a population-based study. , 2014, JAMA neurology.

[49]  J. Bergquist,et al.  Alterations in muscle proteome of patients diagnosed with amyotrophic lateral sclerosis. , 2014, Journal of proteomics.

[50]  Albert Ludolph,et al.  Multicentre quality control evaluation of different biomarker candidates for amyotrophic lateral sclerosis , 2014, Amyotrophic lateral sclerosis & frontotemporal degeneration.

[51]  M. Cudkowicz,et al.  Plasma metabolomic biomarker panel to distinguish patients with amyotrophic lateral sclerosis from disease mimics , 2014, Amyotrophic lateral sclerosis & frontotemporal degeneration.

[52]  L. H. van den Berg,et al.  A post hoc analysis of subgroup outcomes and creatinine in the phase III clinical trial (EMPOWER) of dexpramipexole in ALS , 2014, Amyotrophic lateral sclerosis & frontotemporal degeneration.

[53]  M. P. van den Heuvel,et al.  Cortical thickness in ALS: towards a marker for upper motor neuron involvement , 2014, Journal of Neurology, Neurosurgery & Psychiatry.

[54]  Raquel Manzano,et al.  Amyotrophic Lateral Sclerosis: A Focus on Disease Progression , 2014, BioMed research international.

[55]  J. Rothstein,et al.  Advances in treating amyotrophic lateral sclerosis: insights from pathophysiological studies , 2014, Trends in Neurosciences.

[56]  Gavin Giovannoni,et al.  Plasma neurofilament heavy chain levels and disease progression in amyotrophic lateral sclerosis: insights from a longitudinal study , 2014, Journal of Neurology, Neurosurgery & Psychiatry.

[57]  D. Devos,et al.  Iron Metabolism Disturbance in a French Cohort of ALS Patients , 2014, BioMed research international.

[58]  G. Douaud,et al.  Widespread grey matter pathology dominates the longitudinal cerebral MRI and clinical landscape of amyotrophic lateral sclerosis , 2014, Brain : a journal of neurology.

[59]  H. Braak,et al.  Diffusion tensor imaging analysis of sequential spreading of disease in amyotrophic lateral sclerosis confirms patterns of TDP-43 pathology. , 2014, Brain : a journal of neurology.

[60]  E. Pioro,et al.  Distinct patterns of cortical atrophy in ALS patients with or without dementia: An MRI VBM study , 2014, Amyotrophic lateral sclerosis & frontotemporal degeneration.

[61]  Rui Huang,et al.  An exploratory study of serum creatinine levels in patients with amyotrophic lateral sclerosis , 2014, Neurological Sciences.

[62]  S. Rossignol,et al.  Multi-Parametric Spinal Cord MRI as Potential Progression Marker in Amyotrophic Lateral Sclerosis , 2014, PloS one.

[63]  P. Pradat,et al.  Neuroimaging to Investigate Multisystem Involvement and Provide Biomarkers in Amyotrophic Lateral Sclerosis , 2014, BioMed research international.

[64]  William T. Hu,et al.  Phosphorylated tau as a candidate biomarker for amyotrophic lateral sclerosis. , 2014, JAMA neurology.

[65]  Wei Song,et al.  Serum uric acid level is associated with the prevalence but not with survival of amyotrophic lateral sclerosis in a Chinese population , 2014, Metabolic Brain Disease.

[66]  J. Burgunder,et al.  Recent progress in the genetics of motor neuron disease. , 2014, European journal of medical genetics.

[67]  J. Connor,et al.  Biomarker-based predictive models for prognosis in amyotrophic lateral sclerosis. , 2013, JAMA neurology.

[68]  M. Morita,et al.  Utility of cystatin C for renal function in amyotrophic lateral sclerosis , 2013, Acta neurologica Scandinavica.

[69]  G. Logroscino,et al.  Cortical Thinning and Clinical Heterogeneity in Amyotrophic Lateral Sclerosis , 2013, PloS one.

[70]  F. Schneider,et al.  Brain plasticity in the motor network is correlated with disease progression in amyotrophic lateral sclerosis , 2013, Human brain mapping.

[71]  K. Williams,et al.  Mutation analysis and immunopathological studies of PFN1 in familial and sporadic amyotrophic lateral sclerosis , 2013, Neurobiology of Aging.

[72]  Murray Grossman,et al.  Stages of pTDP‐43 pathology in amyotrophic lateral sclerosis , 2013, Annals of neurology.

[73]  J. Loeffler,et al.  Systemic Down-Regulation of Delta-9 Desaturase Promotes Muscle Oxidative Metabolism and Accelerates Muscle Function Recovery following Nerve Injury , 2013, PloS one.

[74]  G. Comi,et al.  Screening of the PFN1 gene in sporadic amyotrophic lateral sclerosis and in frontotemporal dementia , 2013, Neurobiology of Aging.

[75]  A. Pestronk,et al.  An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study , 2013, The Lancet Neurology.

[76]  V. Meininger,et al.  Mutation analysis of PFN1 in familial amyotrophic lateral sclerosis patients , 2013, Neurobiology of Aging.

[77]  D. Lai,et al.  BMP4 Is a Peripherally-Derived Factor for Motor Neurons and Attenuates Glutamate-Induced Excitotoxicity In Vitro , 2013, PloS one.

[78]  Anders Fuglsang-Frederiksen,et al.  MUNIX and incremental stimulation MUNE in ALS patients and control subjects , 2013, Clinical Neurophysiology.

[79]  M. Bromberg MUNIX and MUNE in ALS , 2013, Clinical Neurophysiology.

[80]  Mark Jenkinson,et al.  Whole-brain magnetic resonance spectroscopic imaging measures are related to disability in ALS , 2013, Neurology.

[81]  Timothy A. Miller,et al.  SOD1 in cerebral spinal fluid as a pharmacodynamic marker for antisense oligonucleotide therapy. , 2013, JAMA neurology.

[82]  L. Ferrucci,et al.  UNC13A influences survival in Italian amyotrophic lateral sclerosis patients: a population-based study , 2013, Neurobiology of Aging.

[83]  C. Shaw,et al.  pNfH is a promising biomarker for ALS , 2013, Amyotrophic lateral sclerosis & frontotemporal degeneration.

[84]  Heidrun Rhode,et al.  Proteome analysis of body fluids for amyotrophic lateral sclerosis biomarker discovery , 2013, Proteomics. Clinical applications.

[85]  S. Rossignol,et al.  Involvement of spinal sensory pathway in ALS and specificity of cord atrophy to lower motor neuron degeneration , 2013, Amyotrophic lateral sclerosis & frontotemporal degeneration.

[86]  Caroline Prunier,et al.  Molecular Imaging of Microglial Activation in Amyotrophic Lateral Sclerosis , 2012, PloS one.

[87]  D. Taruscio,et al.  Modeling delay to diagnosis for Amyotrophic lateral sclerosis: under reporting and incidence estimates , 2012, BMC Neurology.

[88]  David Y. Zhang,et al.  Alterations of signaling pathways in muscle tissues of patients with amyotrophic lateral sclerosis , 2012, Muscle & nerve.

[89]  David S. Wishart,et al.  HMDB 3.0—The Human Metabolome Database in 2013 , 2012, Nucleic Acids Res..

[90]  Gerry Shaw,et al.  Phosphorylated neurofilament heavy subunit (pNF-H) in peripheral blood and CSF as a potential prognostic biomarker in amyotrophic lateral sclerosis , 2012, Journal of Neurology, Neurosurgery & Psychiatry.

[91]  Jonathan M. Bekisz,et al.  Cognitive decline and reduced survival in C9orf72 expansion frontotemporal degeneration and amyotrophic lateral sclerosis , 2012, Journal of Neurology, Neurosurgery & Psychiatry.

[92]  Harald Hampel,et al.  Grey matter correlates of clinical variables in amyotrophic lateral sclerosis (ALS): a neuroimaging study of ALS motor phenotype heterogeneity and cortical focality , 2012, Journal of Neurology, Neurosurgery & Psychiatry.

[93]  B. Le Bizec,et al.  Implementation of a semi-automated strategy for the annotation of metabolomic fingerprints generated by liquid chromatography-high resolution mass spectrometry from biological samples. , 2012, The Analyst.

[94]  Ke Chen,et al.  Patterns of Spontaneous Brain Activity in Amyotrophic Lateral Sclerosis: A Resting-State fMRI Study , 2012, PloS one.

[95]  V. Meininger,et al.  Elevated Serum Ferritin Is Associated with Reduced Survival in Amyotrophic Lateral Sclerosis , 2012, PloS one.

[96]  M. Pomper,et al.  Diagnostic accuracy using diffusion tensor imaging in the diagnosis of ALS: a meta-analysis. , 2012, Academic radiology.

[97]  Jens Stoye,et al.  Combining peak- and chromatogram-based retention time alignment algorithms for multiple chromatography-mass spectrometry datasets , 2012, BMC Bioinformatics.

[98]  L. H. van den Berg,et al.  TDP-43 plasma levels are higher in amyotrophic lateral sclerosis , 2012, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[99]  E. Johansson,et al.  Building multivariate systems biology models. , 2012, Analytical chemistry.

[100]  Dick F. Stegeman,et al.  Motor unit number index (MUNIX) versus motor unit number estimation (MUNE): A direct comparison in a longitudinal study of ALS patients , 2012, Clinical Neurophysiology.

[101]  Erik Johansson,et al.  Strategy for optimizing LC-MS data processing in metabolomics: a design of experiments approach. , 2012, Analytical chemistry.

[102]  V. Drory,et al.  Glycans in Sera of Amyotrophic Lateral Sclerosis Patients and Their Role in Killing Neuronal Cells , 2012, PloS one.

[103]  T L Chenevert,et al.  Decreased motor cortex γ-aminobutyric acid in amyotrophic lateral sclerosis , 2012, Neurology.

[104]  Rupasri Mandal,et al.  Multi-platform characterization of the human cerebrospinal fluid metabolome: a comprehensive and quantitative update , 2012, Genome Medicine.

[105]  A. Chiò,et al.  A Distinct MR Imaging Phenotype in Amyotrophic Lateral Sclerosis: Correlation between T1 Magnetization Transfer Contrast Hyperintensity along the Corticospinal Tract and Diffusion Tensor Imaging Analysis , 2012, American Journal of Neuroradiology.

[106]  M. Weil,et al.  Two Potential Biomarkers Identified in Mesenchymal Stem Cells and Leukocytes of Patients with Sporadic Amyotrophic lateral Sclerosis , 2012, Disease markers.

[107]  P. Andersen,et al.  ALS patients with mutations in the SOD1 gene have an unique metabolomic profile in the cerebrospinal fluid compared with ALS patients without mutations. , 2012, Molecular genetics and metabolism.

[108]  S. Paganoni,et al.  Uric acid levels predict survival in men with amyotrophic lateral sclerosis , 2012, Journal of Neurology.

[109]  Elvar Theodorsson,et al.  Validation and verification of measurement methods in clinical chemistry. , 2012, Bioanalysis.

[110]  M. Cudkowicz,et al.  Biochemical alterations associated with ALS , 2012, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[111]  J. Glass,et al.  Roadmap and standard operating procedures for biobanking and discovery of neurochemical markers in ALS , 2012, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[112]  Sanjeev D Nandedkar,et al.  Reproducibility of MUNIX in patients with amyotrophic lateral sclerosis , 2011, Muscle & nerve.

[113]  Steven Knight,et al.  Integration of structural and functional magnetic resonance imaging in amyotrophic lateral sclerosis. , 2011, Brain : a journal of neurology.

[114]  A. Henriques,et al.  Can Transcriptomics Cut the Gordian Knot of Amyotrophic Lateral Sclerosis? , 2011, Current genomics.

[115]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[116]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[117]  Ammar Al-Chalabi,et al.  Clinical genetics of amyotrophic lateral sclerosis: what do we really know? , 2011, Nature Reviews Neurology.

[118]  V. Torri,et al.  Amyotrophic Lateral Sclerosis Multiprotein Biomarkers in Peripheral Blood Mononuclear Cells , 2011, PloS one.

[119]  M Filippi,et al.  Sensorimotor functional connectivity changes in amyotrophic lateral sclerosis. , 2011, Cerebral cortex.

[120]  M. Primig,et al.  Muscle Gene Expression Is a Marker of Amyotrophic Lateral Sclerosis Severity , 2011, Neurodegenerative Diseases.

[121]  Jia-min Zhuo,et al.  Is hyperhomocysteinemia an Alzheimer's disease (AD) risk factor, an AD marker, or neither? , 2011, Trends in pharmacological sciences.

[122]  V. Meininger,et al.  Association of long ATXN2 CAG repeat sizes with increased risk of amyotrophic lateral sclerosis. , 2011, Archives of neurology.

[123]  B. Dubois,et al.  Expanded ATXN2 CAG repeat size in ALS identifies genetic overlap between ALS and SCA2 , 2011, Neurology.

[124]  Massimo Filippi,et al.  Towards a neuroimaging biomarker for amyotrophic lateral sclerosis , 2011, The Lancet Neurology.

[125]  J. Cohen-Adad,et al.  Demyelination and degeneration in the injured human spinal cord detected with diffusion and magnetization transfer MRI , 2011, NeuroImage.

[126]  R. Edden,et al.  High resolution spectroscopic imaging of GABA at 3 Tesla , 2011, Magnetic resonance in medicine.

[127]  B. Tavitian,et al.  In vivo imaging of neuroinflammation in the rodent brain with [11C]SSR180575, a novel indoleacetamide radioligand of the translocator protein (18 kDa) , 2011, European Journal of Nuclear Medicine and Molecular Imaging.

[128]  T. Tokuda,et al.  Elevated CSF TDP-43 levels in amyotrophic lateral sclerosis: Specificity, sensitivity, and a possible prognostic value , 2011, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[129]  G. Logroscino,et al.  An exploratory study of serum urate levels in patients with amyotrophic lateral sclerosis , 2011, Journal of Neurology.

[130]  A. Ludolph,et al.  Energy metabolism in amyotrophic lateral sclerosis , 2011, The Lancet Neurology.

[131]  Rachael D. Seidler,et al.  Reduced Interhemispheric Functional Connectivity in the Motor Cortex during Rest in Limb-Onset Amyotrophic Lateral Sclerosis , 2010, Front. Syst. Neurosci..

[132]  R. Bowser,et al.  Cystatin C: A Candidate Biomarker for Amyotrophic Lateral Sclerosis , 2010, PloS one.

[133]  R. Bowser,et al.  A pilot trial of memantine and riluzole in ALS: Correlation to CSF biomarkers , 2010, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[134]  Zhiye Chen,et al.  Grey matter volume changes over the whole brain in amyotrophic lateral sclerosis: A voxel-wise meta-analysis of voxel based morphometry studies , 2010, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[135]  James Sayre,et al.  IL-17A is increased in the serum and in spinal cord CD8 and mast cells of ALS patients , 2010, Journal of Neuroinflammation.

[136]  N Filippini,et al.  Corpus callosum involvement is a consistent feature of amyotrophic lateral sclerosis , 2010, Neurology.

[137]  Sanjeev D Nandedkar,et al.  Motor unit number index (MUNIX): principle, method, and findings in healthy subjects and in patients with motor neuron disease , 2010, Muscle & nerve.

[138]  Xiaoping P. Hu,et al.  Diffusion tensor imaging reveals regional differences in the cervical spinal cord in amyotrophic lateral sclerosis , 2010, NeuroImage.

[139]  Kyung Seok Park,et al.  Reproducibility of the motor unit number index (MUNIX) in normal controls and amyotrophic lateral sclerosis patients , 2010, Muscle & nerve.

[140]  Martijn P. van den Heuvel,et al.  Motor Network Degeneration in Amyotrophic Lateral Sclerosis: A Structural and Functional Connectivity Study , 2010, PloS one.

[141]  V. Meininger,et al.  Platelet Serotonin Level Predicts Survival in Amyotrophic Lateral Sclerosis , 2010, PloS one.

[142]  J. Glass,et al.  Galectin-3 is a candidate biomarker for amyotrophic lateral sclerosis: discovery by a proteomics approach. , 2010, Journal of proteome research.

[143]  Erik Stålberg,et al.  Motor unit number index (MUNIX): A novel neurophysiological technique to follow disease progression in amyotrophic lateral sclerosis , 2010, Muscle & nerve.

[144]  K. Bötzel,et al.  Elevated Levels of Methylmalonate and Homocysteine in Parkinson’s Disease, Progressive Supranuclear Palsy and Amyotrophic Lateral Sclerosis , 2010, Dementia and Geriatric Cognitive Disorders.

[145]  J. Connor,et al.  Plasma biomarkers associated with ALS and their relationship to iron homeostasis , 2010, Muscle & nerve.

[146]  L. Martin,et al.  Skeletal muscle-restricted expression of human SOD1 causes motor neuron degeneration in transgenic mice. , 2010, Human molecular genetics.

[147]  A. Musarò State of the art and the dark side of amyotrophic lateral sclerosis. , 2010, World journal of biological chemistry.

[148]  R. Bowser,et al.  The application of biomarkers in clinical trials for motor neuron disease. , 2010, Biomarkers in medicine.

[149]  M. Filippi,et al.  EFNS guidelines on the use of neuroimaging in the management of motor neuron diseases , 2010, European journal of neurology.

[150]  A. Ludolph,et al.  CSF glial markers correlate with survival in amyotrophic lateral sclerosis , 2010, Neurology.

[151]  V. La Bella,et al.  Elevated cerebrospinal fluid and plasma homocysteine levels in ALS , 2010, European journal of neurology.

[152]  Lennart Martens,et al.  The Proteomics Identifications database: 2010 update , 2009, Nucleic Acids Res..

[153]  R. Bowser,et al.  Applying proteomics to the diagnosis and treatment of ALS and related diseases , 2009, Muscle and Nerve.

[154]  W. R. Wikoff,et al.  Variability analysis of human plasma and cerebral spinal fluid reveals statistical significance of changes in mass spectrometry-based metabolomics data. , 2009, Analytical chemistry.

[155]  V. Drory,et al.  Low uric acid levels in serum of patients with ALS: Further evidence for oxidative stress? , 2009, Journal of the Neurological Sciences.

[156]  Ewout J N Groen,et al.  Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis , 2009, Nature Genetics.

[157]  Peter Langfelder,et al.  Weighted gene co-expression network analysis of the peripheral blood from Amyotrophic Lateral Sclerosis patients , 2009, BMC Genomics.

[158]  J. Loeffler,et al.  Neuromuscular junction destruction during amyotrophic lateral sclerosis: insights from transgenic models. , 2009, Current opinion in pharmacology.

[159]  L. Kappos,et al.  Increased levels of inflammatory chemokines in amyotrophic lateral sclerosis , 2009, European journal of neurology.

[160]  L. Schaeffer,et al.  Muscle Mitochondrial Uncoupling Dismantles Neuromuscular Junction and Triggers Distal Degeneration of Motor Neurons , 2009, PloS one.

[161]  Michel Dib,et al.  Biomarkers in Amyotrophic Lateral Sclerosis , 2009, Molecular Diagnosis & Therapy.

[162]  S. Kikuchi,et al.  Cystatin C in cerebrospinal fluid as a biomarker of ALS , 2009, Neuroscience Letters.

[163]  Massimo Filippi,et al.  Longitudinal assessment of grey matter contraction in amyotrophic lateral sclerosis: A tensor based morphometry study , 2009, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[164]  P. Andersen,et al.  Optimization of procedures for collecting and storing of CSF for studying the metabolome in ALS , 2009, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[165]  J. Trojanowski,et al.  TDP-43 in cerebrospinal fluid of patients with frontotemporal lobar degeneration and amyotrophic lateral sclerosis. , 2008, Archives of neurology.

[166]  M Filippi,et al.  A longitudinal diffusion tensor MRI study of the cervical cord and brain in amyotrophic lateral sclerosis patients , 2008, Journal of Neurology, Neurosurgery, and Psychiatry.

[167]  Nils Brünner,et al.  Banking of Biological Fluids for Studies of Disease-associated Protein Biomarkers* , 2008, Molecular & Cellular Proteomics.

[168]  D. Wishart,et al.  The human cerebrospinal fluid metabolome. , 2008, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[169]  A. Ludolph,et al.  Biochemical markers in CSF of ALS patients. , 2008, Current medicinal chemistry.

[170]  K. Morrison,et al.  Increased serum ferritin levels in amyotrophic lateral sclerosis (ALS) patients , 2008, Journal of Neurology.

[171]  A. Ludolph,et al.  Cerebrospinal fluid biomarkers of neurodegeneration in chronic neurological diseases , 2008, Expert review of molecular diagnostics.

[172]  E. Beghi,et al.  Predictors of long survival in amyotrophic lateral sclerosis: A population-based study , 2008, Journal of the Neurological Sciences.

[173]  B. McConkey,et al.  TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis , 2008, Nature Genetics.

[174]  R. Bowser,et al.  Protein biomarkers for amyotrophic lateral sclerosis , 2008, Expert review of proteomics.

[175]  Xun Hu,et al.  TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis , 2008, Science.

[176]  Wolfram Weckwerth,et al.  Integration of metabolomics and proteomics in molecular plant physiology--coping with the complexity by data-dimensionality reduction. , 2008, Physiologia plantarum.

[177]  M. Bogdanov,et al.  Oxidative stress biomarkers in sporadic ALS , 2008, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[178]  M Filippi,et al.  Voxel‐based morphometry study of brain volumetry and diffusivity in amyotrophic lateral sclerosis patients with mild disability , 2007, Human brain mapping.

[179]  M. Ala-Korpela Potential role of body fluid 1H NMR metabonomics as a prognostic and diagnostic tool , 2007, Expert review of molecular diagnostics.

[180]  Didier Dormont,et al.  Diffusion tensor imaging and voxel based morphometry study in amyotrophic lateral sclerosis: relationships with motor disability , 2007, Journal of Neurology, Neurosurgery & Psychiatry.

[181]  L. Concha,et al.  Spatial Profiling of the Corticospinal Tract in Amyotrophic Lateral Sclerosis Using Diffusion Tensor Imaging , 2007, Journal of neuroimaging : official journal of the American Society of Neuroimaging.

[182]  J. Hauw,et al.  Muscle Nogo‐a expression is a prognostic marker in lower motor neuron syndromes , 2007, Annals of neurology.

[183]  S L Pullman,et al.  Quantitative objective markers for upper and lower motor neuron dysfunction in ALS , 2007, Neurology.

[184]  B Stieltjes,et al.  Diffusion tensor imaging-based fractional anisotropy quantification in the corticospinal tract of patients with amyotrophic lateral sclerosis using a probabilistic mixture model. , 2007, AJNR. American journal of neuroradiology.

[185]  Ronald R. Peeters,et al.  Quantitative diffusion tensor imaging in amyotrophic lateral sclerosis , 2007, NeuroImage.

[186]  Derek K. Jones,et al.  A longitudinal study of diffusion tensor MRI in ALS , 2007, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[187]  V. Meininger,et al.  Brain perfusion imaging in amyotrophic lateral sclerosis: Extent of cortical changes according to the severity and topography of motor impairment , 2007, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[188]  M. Filippi,et al.  Diffusion anisotropy of the cervical cord is strictly associated with disability in amyotrophic lateral sclerosis , 2006, Journal of Neurology, Neurosurgery & Psychiatry.

[189]  M. McGrath,et al.  MCP-1 chemokine receptor CCR2 is decreased on circulating monocytes in sporadic amyotrophic lateral sclerosis (sALS) , 2006, Journal of Neuroimmunology.

[190]  C. Hanstock,et al.  Detection of cerebral degeneration in amyotrophic lateral sclerosis using high-field magnetic resonance spectroscopy. , 2006, Archives of neurology.

[191]  R. A. van den Berg,et al.  Centering, scaling, and transformations: improving the biological information content of metabolomics data , 2006, BMC Genomics.

[192]  L. Ungar,et al.  Identification of potential CSF biomarkers in ALS , 2006, Neurology.

[193]  Hans-Jochen Heinze,et al.  Widespread sensorimotor and frontal cortical atrophy in Amyotrophic Lateral Sclerosis , 2006, BMC neurology.

[194]  Vanathi Gopalakrishnan,et al.  Proteomic profiling of cerebrospinal fluid identifies biomarkers for amyotrophic lateral sclerosis , 2005, Journal of neurochemistry.

[195]  J. Kaye,et al.  Safety and Acceptability of the Research Lumbar Puncture , 2005, Alzheimer disease and associated disorders.

[196]  P. Shaw,et al.  Molecular and cellular pathways of neurodegeneration in motor neurone disease , 2005, Journal of Neurology, Neurosurgery & Psychiatry.

[197]  A Al-Chalabi,et al.  Distinct cerebral lesions in sporadic and 'D90A' SOD1 ALS: studies with [11C]flumazenil PET. , 2005, Brain : a journal of neurology.

[198]  M. Schoenfeld,et al.  Functional motor compensation in amyotrophic lateral sclerosis , 2005, Journal of Neurology.

[199]  A Al-Chalabi,et al.  [11C]-WAY100635 PET demonstrates marked 5-HT1A receptor changes in sporadic ALS. , 2005, Brain : a journal of neurology.

[200]  H. Takata,et al.  Oxidative stress and metal content in blood and cerebrospinal fluid of amyotrophic lateral sclerosis patients with and without a Cu, Zn-superoxide dismutase mutation , 2005, Neurological research.

[201]  Sanjeev D. Nandedkar,et al.  Motor unit number index (MUNIX) , 2004, IEEE Transactions on Biomedical Engineering.

[202]  A. Oliveira,et al.  Detection of corticospinal tract compromise in amyotrophic lateral sclerosis with brain MR imaging: relevance of the T1-weighted spin-echo magnetization transfer contrast sequence. , 2004, AJNR. American journal of neuroradiology.

[203]  S. Appel,et al.  Increased lipid peroxidation in sera of ALS patients , 2004, Neurology.

[204]  M. Greicius,et al.  Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI , 2004, Proc. Natl. Acad. Sci. USA.

[205]  Volkmar Glauche,et al.  Diffusion tensor MRI of early upper motor neuron involvement in amyotrophic lateral sclerosis. , 2004, Brain : a journal of neurology.

[206]  N. Schuff,et al.  Early detection and longitudinal changes in amyotrophic lateral sclerosis by 1H MRSI , 2002 .

[207]  C. Andres,et al.  Abnormal SMN1 gene copy number is a susceptibility factor for amyotrophic lateral sclerosis , 2002, Annals of neurology.

[208]  Carsten Konrad,et al.  Pattern of cortical reorganization in amyotrophic lateral sclerosis: a functional magnetic resonance imaging study , 2002, Experimental Brain Research.

[209]  H. Schild,et al.  Proton magnetic resonance spectroscopy of the motor cortex in 70 patients with amyotrophic lateral sclerosis. , 2001, Archives of neurology.

[210]  R. Tarducci,et al.  Magnetic resonance imaging and 1H-magnetic resonance spectroscopy in amyotrophic lateral sclerosis , 2001, Neuroradiology.

[211]  P N Leigh,et al.  Extramotor involvement in ALS: PET studies with the GABA(A) ligand [(11)C]flumazenil. , 2000, Brain : a journal of neurology.

[212]  M. Beal,et al.  Increased oxidative damage to DNA in ALS patients. , 2000, Free radical biology & medicine.

[213]  O. Hardiman,et al.  Clinical features of amyotrophic lateral sclerosis according to the El Escorial and Airlie House diagnostic criteria: A population-based study. , 2000, Archives of neurology.

[214]  M A Horsfield,et al.  Diffusion tensor MRI assesses corticospinal tract damage in ALS , 1999, Neurology.

[215]  M. Mattson,et al.  Presence of 4‐hydroxynonenal in cerebrospinal fluid of patients with sporadic amyotrophic lateral sclerosis , 1998, Annals of neurology.

[216]  J. Niland,et al.  Cerebrospinal fluid interleukin 6 in amyotrophic lateral sclerosis: immunological parameter and comparison with inflammatory and non-inflammatory central nervous system diseases , 1998, Journal of the Neurological Sciences.

[217]  M. Waragai,et al.  Serial MRI and SPECT in amyotrophic lateral sclerosis: A case report , 1997, Journal of the Neurological Sciences.

[218]  S. Topp,et al.  Quantification of brain metabolites in amyotrophic lateral sclerosis by localized proton magnetic resonance spectroscopy , 1997, Neurology.

[219]  C F Ibáñez,et al.  Muscle-derived neurotrophin-4 as an activity-dependent trophic signal for adult motor neurons. , 1995, Science.

[220]  P. Ince,et al.  CSF and plasma amino acid levels in motor neuron disease: elevation of CSF glutamate in a subset of patients. , 1995, Neurodegeneration : a journal for neurodegenerative disorders, neuroprotection, and neuroregeneration.

[221]  D. Arnold,et al.  Detection of cortical neuron loss in motor neuron disease by proton magnetic resonance spectroscopic imaging in vivo , 1994, Neurology.

[222]  P. Leigh,et al.  Motor neuron disease. , 1994, Springer London.

[223]  K. Ohtomo,et al.  Amyotrophic lateral sclerosis: T2 shortening in motor cortex at MR imaging. , 1993, Radiology.

[224]  P N Leigh,et al.  Cortical function in amyotrophic lateral sclerosis. A positron emission tomography study. , 1993, Brain : a journal of neurology.

[225]  J. Haines,et al.  Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis , 1993, Nature.

[226]  G. Vrbová,et al.  Dependence of postnatal motoneurones on their targets: review and hypothesis , 1992, Trends in Neurosciences.

[227]  J. Mazziotta,et al.  Cerebral glucose utilization in motor neuron disease. , 1992, Archives of neurology.

[228]  G. Waldemar,et al.  Focal reductions of cerebral blood flow in amyotrophic lateral sclerosis: A [99m Tc]-d,l-HMPAO SPECT study , 1992, Journal of the Neurological Sciences.

[229]  J. Coyle,et al.  Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis , 1990, Annals of neurology.

[230]  M. Dalakas,et al.  Cortical motor-sensory hypometabolism in amyotrophic lateral sclerosis: a PET study. , 1988, Journal of computer assisted tomography.

[231]  C. Angelini,et al.  Circulating microRNAs as biomarkers of muscle differentiation and atrophy in ALS. , 2016, Clinical neuropathology.

[232]  C. Roodveldt,et al.  The 'Omics' of Amyotrophic Lateral Sclerosis. , 2016, Trends in molecular medicine.

[233]  Susana Pinto,et al.  Phosphoneurofilament heavy chain and N-glycomics from the cerebrospinal fluid in amyotrophic lateral sclerosis. , 2015, Clinica chimica acta; international journal of clinical chemistry.

[234]  Janel O. Johnson,et al.  Mutations in the CHCHD10 gene are a common cause of familial amyotrophic lateral sclerosis. , 2014, Brain : a journal of neurology.

[235]  P. Corcia,et al.  [What are the applications of biomarkers in ALS today?]. , 2014, Presse medicale.

[236]  T. Hirayama,et al.  Relationships between disease progression and serum levels of lipid, urate, creatinine and ferritin in Japanese patients with amyotrophic lateral sclerosis: a cross-sectional study. , 2012, Internal medicine.

[237]  Coral Barbas,et al.  Gas chromatography-mass spectrometry (GC-MS)-based metabolomics. , 2011, Methods in molecular biology.

[238]  M. Mena,et al.  Neurotrophic factors in neurodegenerative disorders: Model of parkinson’s disease , 2009, Neurotoxicity Research.

[239]  Michael Primig,et al.  Gene profiling of skeletal muscle in an amyotrophic lateral sclerosis mouse model. , 2008, Physiological genomics.

[240]  P. Andersen Amyotrophic lateral sclerosis associated with mutations in the CuZn superoxide dismutase gene , 2006, Current neurology and neuroscience reports.

[241]  N. Schuff,et al.  Early detection and longitudinal changes in amyotrophic lateral sclerosis by (1)H MRSI. , 2002, Neurology.

[242]  M. Gaweł,et al.  Amyotrophic lateral sclerosis: correlation of clinical and MR imaging findings. , 1995, Radiology.