Numerical Experiments with a New Dynamic Mixed Subgrid-Scale Model

In the present work we introduce an LES framework which does not require any commutation property between filtering and derivative operators. A consistent redefinition of the SGS tensor in the new framework introduces several differences in the classical modeling strategies, including a modified, cheaper, form of Germano dynamic procedure. This dynamic procedure is exploited trough a new form of mixed model, whose scale-similar part is derived by a Taylor series analysis of the SGS tensor. The model is implemented in a commercial unstructured finite volume solver and numerical tests are performed on the turbulent channel flow at \(\mathrm {Re}_\tau = 590\), showing the flexibility and accuracy of the proposed modeling strategy.