On complexity of special maximum matchings constructing

For bipartite graphs the NP-completeness is proved for the problem of existence of maximum matching which removal leads to a graph with given lower(upper) bound for the cardinality of its maximum matching.

[1]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..

[2]  Shimon Even,et al.  An O (N2.5) algorithm for maximum matching in general graphs , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[3]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[4]  R. Häggkvist,et al.  Bipartite graphs and their applications , 1998 .

[5]  Ian Holyer,et al.  The NP-Completeness of Edge-Coloring , 1981, SIAM J. Comput..

[6]  C Berge,et al.  TWO THEOREMS IN GRAPH THEORY. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Jérôme Monnot The labeled perfect matching in bipartite graphs , 2005, Inf. Process. Lett..

[8]  Moshe Lewenstein,et al.  Uniquely Restricted Matchings , 2001, Algorithmica.

[9]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[10]  Julian Scott Yeomans,et al.  A linear time algorithm for maximum matchings in convex, bipartite graphs☆ , 1996 .

[11]  Mihalis Yannakakis,et al.  The complexity of restricted spanning tree problems , 1982, JACM.

[12]  Harold W. Kuhn,et al.  The Hungarian method for the assignment problem , 1955, 50 Years of Integer Programming.

[13]  Angelika Steger,et al.  On induced matchings , 1993, Discret. Math..

[14]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[15]  David A. Plaisted,et al.  An NP-complete matching problem , 1980, Discret. Appl. Math..

[16]  Jack Edmonds,et al.  Maximum matching and a polyhedron with 0,1-vertices , 1965 .

[17]  A. Frieze Complexity of a 3-dimensional assignment problem , 1983 .

[18]  Silvio Micali,et al.  An O(v|v| c |E|) algoithm for finding maximum matching in general graphs , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[19]  Wayne Goddard,et al.  Generalized subgraph-restricted matchings in graphs , 2005, Discret. Math..

[20]  F. Glover Maximum matching in a convex bipartite graph , 1967 .

[21]  Raffi R. Kamalian,et al.  Two polynomial algorithms for special maximum matching constructing in trees , 2007, ArXiv.

[22]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[23]  Kathryn Fraughnaugh,et al.  Introduction to graph theory , 1973, Mathematical Gazette.

[24]  R. Z. Norman,et al.  An algorithm for a minimum cover of a graph , 1959 .

[25]  L. Vietoris Theorie der endlichen und unendlichen Graphen , 1937 .

[26]  Kurt Mehlhorn,et al.  Can A Maximum Flow be Computed on o(nm) Time? , 1990, ICALP.

[27]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[28]  Alon Itai,et al.  Some Matching Problems for Bipartite Graphs , 1978, JACM.

[29]  David S. Johnson,et al.  Stockmeyer: some simplified np-complete graph problems , 1976 .

[30]  Franco P. Preparata,et al.  Efficient algorithms for finding maximum matchings in convex bipartite graphs and related problems , 1981, Acta Informatica.

[31]  Bolian Liu,et al.  Combinatorial Properties of Matrices , 2000 .

[32]  D. Koenig Theorie Der Endlichen Und Unendlichen Graphen , 1965 .

[33]  Frank Harary,et al.  Graph Theory , 2016 .

[34]  Kathie Cameron,et al.  Coloured matchings in bipartite graphs , 1997, Discret. Math..

[35]  H. W. Kuhn,et al.  Variants of the hungarian method for assignment problems , 1956 .

[36]  Kurt Mehlhorn,et al.  Computing a Maximum Cardinality Matching in a Bipartite Graph in Time O(^1.5 sqrt m/log n) , 1991, Inf. Process. Lett..