暂无分享,去创建一个
[1] David S. Johnson,et al. Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..
[2] Shimon Even,et al. An O (N2.5) algorithm for maximum matching in general graphs , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).
[3] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[4] R. Häggkvist,et al. Bipartite graphs and their applications , 1998 .
[5] Ian Holyer,et al. The NP-Completeness of Edge-Coloring , 1981, SIAM J. Comput..
[6] C Berge,et al. TWO THEOREMS IN GRAPH THEORY. , 1957, Proceedings of the National Academy of Sciences of the United States of America.
[7] Jérôme Monnot. The labeled perfect matching in bipartite graphs , 2005, Inf. Process. Lett..
[8] Moshe Lewenstein,et al. Uniquely Restricted Matchings , 2001, Algorithmica.
[9] J. Edmonds. Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.
[10] Julian Scott Yeomans,et al. A linear time algorithm for maximum matchings in convex, bipartite graphs☆ , 1996 .
[11] Mihalis Yannakakis,et al. The complexity of restricted spanning tree problems , 1982, JACM.
[12] Harold W. Kuhn,et al. The Hungarian method for the assignment problem , 1955, 50 Years of Integer Programming.
[13] Angelika Steger,et al. On induced matchings , 1993, Discret. Math..
[14] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[15] David A. Plaisted,et al. An NP-complete matching problem , 1980, Discret. Appl. Math..
[16] Jack Edmonds,et al. Maximum matching and a polyhedron with 0,1-vertices , 1965 .
[17] A. Frieze. Complexity of a 3-dimensional assignment problem , 1983 .
[18] Silvio Micali,et al. An O(v|v| c |E|) algoithm for finding maximum matching in general graphs , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).
[19] Wayne Goddard,et al. Generalized subgraph-restricted matchings in graphs , 2005, Discret. Math..
[20] F. Glover. Maximum matching in a convex bipartite graph , 1967 .
[21] Raffi R. Kamalian,et al. Two polynomial algorithms for special maximum matching constructing in trees , 2007, ArXiv.
[22] Richard M. Karp,et al. A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.
[23] Kathryn Fraughnaugh,et al. Introduction to graph theory , 1973, Mathematical Gazette.
[24] R. Z. Norman,et al. An algorithm for a minimum cover of a graph , 1959 .
[25] L. Vietoris. Theorie der endlichen und unendlichen Graphen , 1937 .
[26] Kurt Mehlhorn,et al. Can A Maximum Flow be Computed on o(nm) Time? , 1990, ICALP.
[27] H. Kuhn. The Hungarian method for the assignment problem , 1955 .
[28] Alon Itai,et al. Some Matching Problems for Bipartite Graphs , 1978, JACM.
[29] David S. Johnson,et al. Stockmeyer: some simplified np-complete graph problems , 1976 .
[30] Franco P. Preparata,et al. Efficient algorithms for finding maximum matchings in convex bipartite graphs and related problems , 1981, Acta Informatica.
[31] Bolian Liu,et al. Combinatorial Properties of Matrices , 2000 .
[32] D. Koenig. Theorie Der Endlichen Und Unendlichen Graphen , 1965 .
[33] Frank Harary,et al. Graph Theory , 2016 .
[34] Kathie Cameron,et al. Coloured matchings in bipartite graphs , 1997, Discret. Math..
[35] H. W. Kuhn,et al. Variants of the hungarian method for assignment problems , 1956 .
[36] Kurt Mehlhorn,et al. Computing a Maximum Cardinality Matching in a Bipartite Graph in Time O(^1.5 sqrt m/log n) , 1991, Inf. Process. Lett..