Layered nanocomposites inspired by the structure and mechanical properties of nacre.

Nacre (mother-of-pearl), made of inorganic and organic constituents (95 vol% aragonite calcium carbonate (CaCO(3)) platelets and 5 vol% elastic biopolymers), possesses a unique combination of remarkable strength and toughness, which is compatible for conventional high performance materials. The excellent mechanical properties are related to its hierarchical structure and precisely designed organic-inorganic interface. The rational design of aragonite platelet strength, aspect ratio of aragonite platelets, and interface strength ensures that the strength of nacre is maximized under platelet pull-out failure mode. At the same time, the synergy of strain hardening mechanisms acting over multiple scales results in platelets sliding on one another, and thus maximizes the energy dissipation of viscoplastic biopolymers. The excellent integrated mechanical properties with hierarchical structure have inspired chemists and materials scientists to develop biomimetic strategies for artificial nacre materials. This critical review presents a broad overview of the state-of-the-art work on the preparation of layered organic-inorganic nanocomposites inspired by nacre, in particular, the advantages and disadvantages of various biomimetic strategies. Discussion is focused on the effect of the layered structure, interface, and component loading on strength and toughness of nacre-mimic layered nanocomposites (148 references).

[1]  Zhiyong Tang,et al.  Nanostructured artificial nacre , 2003, Nature materials.

[2]  N. Kotov,et al.  Fusion of Seashell Nacre and Marine Bioadhesive Analogs: High‐Strength Nanocomposite by Layer‐by‐Layer Assembly of Clay and L‐3,4‐Dihydroxyphenylalanine Polymer , 2007 .

[3]  Genaro Zavala,et al.  Mechanism of and Defect Formation in the Self-Assembly of Polymeric Polycation−Montmorillonite Ultrathin Films , 1997 .

[4]  T. Sumitomo,et al.  Fabrication of nature-inspired bulk laminar composites by a powder processing , 2010 .

[5]  S. Šimunović,et al.  A continuous damage random thresholds model for simulating the fracture behavior of nacre. , 2005, Biomaterials.

[6]  H. Pizem,et al.  Effects of substrate surface functionality on solution-deposited titania films , 2002 .

[7]  Jacqueline A. Cutroni,et al.  Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture , 2005, Nature materials.

[8]  C. Brinker,et al.  Preparation and characterization of mesostructured polymer-functionalized sol-gel-derived thin films , 2003 .

[9]  M. Harmer,et al.  Design of a Laminated Ceramic Composite for Improved Strength and Toughness , 1992 .

[10]  Tzung-Hua Lin,et al.  Electrophoretic deposition of biomimetic nanocomposites , 2009 .

[11]  Andreas Walther,et al.  Supramolecular control of stiffness and strength in lightweight high-performance nacre-mimetic paper with fire-shielding properties. , 2010, Angewandte Chemie.

[12]  Jun Liu,et al.  Nucleation and Growth of Oriented Ceramic Films onto Organic Interfaces , 1996 .

[13]  Paul K. Hansma,et al.  Bone indentation recovery time correlates with bond reforming time , 2001, Nature.

[14]  Xiaodong Li,et al.  In situ observation of nanograin rotation and deformation in nacre. , 2006, Nano letters.

[15]  B. Lawn,et al.  In Situ Processing of Silicon Carbide Layer Structures , 1995 .

[16]  W. Clegg,et al.  Crack Deflection in Ceramic Laminates Using Porous Interlayers , 1998 .

[17]  P. Fratzl,et al.  Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. , 2000, Biophysical journal.

[18]  Ludwig J. Gauckler,et al.  Platelet-reinforced polymer matrix composites by combined gel-casting and hot-pressing. Part I: Polypropylene matrix composites , 2010 .

[19]  Owen Y Loh,et al.  Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials. , 2011, Nature communications.

[20]  G. Mayer,et al.  New classes of tough composite materials—Lessons from natural rigid biological systems , 2006 .

[21]  B. Lawn Fracture of Brittle Solids by Brian Lawn , 1993 .

[22]  S. M. Hsu,et al.  Hertzian Contact Response of Tailored Silicon Nitride Multilayers , 1996 .

[23]  M. Meyers,et al.  The growth of nacre in the abalone shell. , 2008, Acta biomaterialia.

[24]  Dajun Chen,et al.  Enhanced Mechanical Properties of Graphene-Based Poly(vinyl alcohol) Composites , 2010 .

[25]  Mario Viani,et al.  Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites , 1999, Nature.

[26]  L. Brinson,et al.  High‐Nanofiller‐Content Graphene Oxide–Polymer Nanocomposites via Vacuum‐Assisted Self‐Assembly , 2010 .

[27]  Y. Bai,et al.  Microstructure and Characteristics in the Organic Matrix Layers of Nacre , 2002 .

[28]  J. Loos,et al.  Latex-based concept for the preparation of graphene-based polymer nanocomposites , 2010 .

[29]  Eduardo Saiz,et al.  Designing highly toughened hybrid composites through nature-inspired hierarchical complexity , 2009 .

[30]  A. P. Jackson,et al.  The mechanical design of nacre , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[31]  Yong Huang,et al.  The characterization and measurement of interfacial toughness for Si3N4/BN composites by the four-point bend test , 2004 .

[32]  W. Clegg,et al.  The fabrication and failure of laminar ceramic composites , 1992 .

[33]  Xiaoming Yang,et al.  Well-dispersed chitosan/graphene oxide nanocomposites. , 2010, ACS applied materials & interfaces.

[34]  Paula T Hammond,et al.  Exponential growth of LBL films with incorporated inorganic sheets. , 2008, Nano letters.

[35]  K. Kendall,et al.  A simple way to make tough ceramics , 1990, Nature.

[36]  Anran Liu,et al.  Electrically conductive and mechanically strong biomimetic chitosan/reduced graphene oxide composite films , 2010 .

[37]  Fan Song,et al.  Effect of a negative Poisson ratio in the tension of ceramics. , 2008, Physical review letters.

[38]  Zhigang Suo,et al.  Deformation mechanisms in nacre , 2001 .

[39]  C. Brinker,et al.  Evaporation-Induced Self-Assembly of Hybrid Bridged Silsesquioxane Film and Particulate Mesophases with Integral Organic Functionality , 2000 .

[40]  Joachim Bill,et al.  Nanomechanical Properties of Bioinspired Organic–Inorganic Composite Films , 2007 .

[41]  J. Zink,et al.  In situ fluorescence probing of the chemical and structural changes during formation of hexagonal phase cetyltrimethylammonium bromide and lamellar phase CTAB/Poly(dodecylmethacrylate) sol–gel silica thin films , 2008 .

[42]  M. Sarikaya,et al.  An introduction to biomimetics: A structural viewpoint , 1994, Microscopy research and technique.

[43]  G. Shi,et al.  Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure , 2009 .

[44]  Joachim Bill,et al.  Synthesis and mechanical behavior of bioinspired ZrO2–organic nacre-like laminar nanocomposites , 2010 .

[45]  Shuhong Yu,et al.  Biologically inspired, strong, transparent, and functional layered organic-inorganic hybrid films. , 2010, Angewandte Chemie.

[46]  F. Shi,et al.  Artificial Nacre by Alternating Preparation of Layer-by-Layer Polymer Films and CaCO3 Strata , 2007 .

[47]  Yunfeng Lu,et al.  Evaporation-Induced Self-Assembly: Nanostructures Made Easy** , 1999 .

[48]  Michael F. Ashby,et al.  The mechanical efficiency of natural materials , 2004 .

[49]  Hong-Bin Yao,et al.  Artificial nacre-like bionanocomposite films from the self-assembly of chitosan-montmorillonite hybrid building blocks. , 2010, Angewandte Chemie.

[50]  Yong Huang,et al.  Special assembly of laminated nanocomposite that mimics nacre , 2008 .

[51]  David B. Marshall,et al.  Enhanced Fracture Toughness in Layered Microcomposites of Ce‐ZrO2 and Al2O3 , 1991 .

[52]  N. Sommerdijk,et al.  Lessons from Nature—Biomimetic Approaches to Minerals with Complex Structures , 2010 .

[53]  I. Zhitomirsky,et al.  Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects. , 2002, Advances in colloid and interface science.

[54]  F. Cui,et al.  Observations of damage morphologies in nacre during deformation and fracture , 1995 .

[55]  F. Aldinger,et al.  Laminates of zinc oxide and poly(amino acid) layers with enhanced mechanical performance , 2007 .

[56]  Dirk Volkmer,et al.  Multilayered CaCO3/block-copolymer materials via amorphous precursor to crystal transformation , 2010 .

[57]  Wei-Han Huang,et al.  Bioinspired assembly of surface-roughened nanoplatelets. , 2010, Journal of colloid and interface science.

[58]  Y. Bai,et al.  Effects of nanostructures on the fracture strength of the interfaces in nacre , 2003 .

[59]  Marc André Meyers,et al.  Mechanical strength of abalone nacre: role of the soft organic layer. , 2008, Journal of the mechanical behavior of biomedical materials.

[60]  P. Sarkar,et al.  Structural Ceramic Microlaminates by Electrophoretic Deposition , 1992 .

[61]  S. Mann,et al.  Molecular Construction of Oriented Inorganic Materials: Controlled Nucleation of Calcite and Aragonite under Compressed Langmuir Monolayers , 1994 .

[62]  Mehmet Sarikaya,et al.  Mechanical Property-Microstructural Relationships in Abalone Shell , 1989 .

[63]  Robert M. Panas,et al.  Nanoscale Morphology and Indentation of Individual Nacre Tablets from the Gastropod Mollusc Trochus Niloticus , 2005 .

[64]  Marc A. Meyers,et al.  Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells , 2000 .

[65]  Yong Huang,et al.  Micro/nanoscale mechanical characterization and in situ observation of cracking of laminated Si3N4/BN composites , 2008 .

[66]  Eduardo Saiz,et al.  A novel biomimetic approach to the design of high-performance ceramic–metal composites , 2010, Journal of The Royal Society Interface.

[67]  Ludwig J. Gauckler,et al.  Bioinspired Design and Assembly of Platelet Reinforced Polymer Films , 2008, Science.

[68]  Reza Rabiei,et al.  Failure mode transition in nacre and bone-like materials. , 2010, Acta biomaterialia.

[69]  G. Rutledge,et al.  Elastic Properties of a Single Lamella of Montmorillonite by Molecular Dynamics Simulation , 2004 .

[70]  Yuh J. Chao,et al.  Nanoscale Structural and Mechanical Characterization of a Natural Nanocomposite Material: The Shell of Red Abalone , 2004 .

[71]  John D. Currey,et al.  Mechanical properties of mother of pearl in tension , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[72]  P. Messersmith,et al.  Synthesis and Characterization of Layered Silicate-Epoxy Nanocomposites , 1994 .

[73]  Mehmet Sarikaya,et al.  Rigid biological composite materials: Structural examples for biomimetic design , 2002 .

[74]  P. C. Rieke,et al.  Ceramic Thin-Film Formation on Functionalized Interfaces Through Biomimetic Processing , 1994, Science.

[75]  R. Davey,et al.  Oriented crystallization of CaCo3 under compressed monolayers. Part 1.—Morphological studies of mature crystals , 1991 .

[76]  T. Belytschko,et al.  Computational Studies of the Structure, Behavior upon Heating, and Mechanical Properties of Graphite Oxide , 2007 .

[77]  E. Anderson,et al.  Composites with planar reinforcements (flakes, ribbons)—A review† , 1979 .

[78]  S. Mann,et al.  Template‐directed nucleation and growth of inorganic materials , 1994 .

[79]  Z. Tang,et al.  Counterintuitive effect of molecular strength and role of molecular rigidity on mechanical properties of layer-by-layer assembled nanocomposites. , 2007, Nano letters.

[80]  P. C. Rieke,et al.  Innovative materials processing strategies: a biomimetic approach. , 1992, Science.

[81]  Q. Xue,et al.  Preparation of Ordered Multilayer Titania/polymer Nanocomposite Thin Films by Evaporation-induced Self-assembly , 2004 .

[82]  Yasuaki Seki,et al.  Biological materials: Structure and mechanical properties , 2008 .

[83]  S. M. Gruner,et al.  Biomimetic Pathways for Assembling Inorganic Thin Films , 1996, Science.

[84]  Emmanuel P. Giannelis,et al.  NEW ADVANCES IN POLYMER/LAYERED SILICATE NANOCOMPOSITES , 2002 .

[85]  A K Soh,et al.  Structural and mechanical properties of the organic matrix layers of nacre. , 2003, Biomaterials.

[86]  Hengde Li,et al.  Effect of inorganic–organic interface adhesion on mechanical properties of Al2O3/polymer laminate composites , 2003 .

[87]  L. Zhang,et al.  High toughness silicon carbide/graphite laminar composite by slip casting , 1995 .

[88]  F. Barthelat,et al.  On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure , 2007 .

[89]  N. Watabe,et al.  STUDIES ON SHELL FORMATION , 1961, The Journal of biophysical and biochemical cytology.

[90]  P. Aken,et al.  Toughening through nature-adapted nanoscale design. , 2009, Nano letters.

[91]  Yong Huang,et al.  An efficient biomimetic process for fabrication of artificial nacre with ordered-nanostructure , 2008 .

[92]  A. Waas,et al.  Ultrastrong and Stiff Layered Polymer Nanocomposites , 2007, Science.

[93]  Y. Hirata,et al.  Coat of Alumina Sheet with Needle-like Mullite , 1990 .

[94]  K. Asai,et al.  Alternate Multilayer Deposition from Ammonium Amphiphiles and Titanium Dioxide Crystalline Nanosheets Using the Langmuir−Blodgett Technique , 2001 .

[95]  Zhiyong Tang,et al.  Can nature's design be improved upon? High strength, transparent nacre-like nanocomposites with double network of sacrificial cross links. , 2008, The journal of physical chemistry. B.

[96]  S. Mann,et al.  Oriented crystallization of CaCo3 under compressed monolayers. Part 2.—Morphology, structure and growth of immature crystals , 1991 .

[97]  Arcan F. Dericioglu,et al.  An efficient hybrid conventional method to fabricate nacre-like bulk nano-laminar composites , 2009 .

[98]  Jialin Sun,et al.  Polyacrylamide-clay nacre-like nanocomposites prepared by electrophoretic deposition , 2007 .

[99]  M. D. Thouless,et al.  Crack Deflection and Propagation in Layered Silicon Nitride/Boron Nitride Ceramics , 2005 .

[100]  O. Sbaizero,et al.  Alumina/zirconia multilayer composites obtained by centrifugal consolidation , 1995 .

[101]  Linhua Zou,et al.  Control of Composition and Structure in Laminated Silicon Nitride/Boron Nitride Composites , 2002 .

[102]  Paul K. Hansma,et al.  Methods for fabricating and characterizing a new generation of biomimetic materials , 1999 .

[103]  Zhigang Suo,et al.  Model for the robust mechanical behavior of nacre , 2001 .

[104]  Yong Huang,et al.  Biomimetic structure design — a possible approach to change the brittleness of ceramics in nature☆ , 2000 .

[105]  Jian-Guo Wang,et al.  Laminated microstructure of Bivalva shell and research of biomimetic ceramic/polymer composite , 2004 .

[106]  O. Ikkala,et al.  Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways. , 2010, Nano letters.

[107]  C. Brinker,et al.  Continuous self-assembly of organic–inorganic nanocomposite coatings that mimic nacre , 1998, Nature.

[108]  Horacio Dante Espinosa,et al.  An Experimental Investigation of Deformation and Fracture of Nacre–Mother of Pearl , 2007 .

[109]  Yong Huang,et al.  The measurement and characterization of the interfacial toughness of Si3N4/BN composites by a three-point bending test , 2003 .

[110]  S. Weiner,et al.  On the relationship between the microstructure of bone and its mechanical stiffness. , 1992, Journal of biomechanics.

[111]  Wei-Han Huang,et al.  Electrophoretic co-deposition of biomimetic nanoplatelet–polyelectrolyte composites , 2009 .

[112]  C. Grégoire TOPOGRAPHY OF THE ORGANIC COMPONENTS IN MOTHER-OF-PEARL , 1957, The Journal of biophysical and biochemical cytology.

[113]  F. Aldinger,et al.  Deposition of titania thin films from aqueous solution by a continuous flow technique , 2002 .

[114]  S. Kanzaki,et al.  Layered Silicon Nitride‐Based Composites with Discontinuous Boron Nitride Interlayers , 2004 .

[115]  K. Katti,et al.  Experimental investigation of nanomechanics of the mineral-protein interface in nacre , 2008 .

[116]  M. Fritz,et al.  The nacre protein perlucin nucleates growth of calcium carbonate crystals , 2003, Journal of microscopy.

[117]  Francois Barthelat,et al.  Merger of structure and material in nacre and bone - Perspectives on de novo biomimetic materials , 2009 .

[118]  Stephen Mann,et al.  Molecular tectonics in biomineralization and biomimetic materials chemistry , 1993, Nature.

[119]  R. Spolenak,et al.  Fast assembly of bio-inspired nanocomposite films , 2008 .

[120]  S. Stupp,et al.  Lamellar semiconductor–organic nanostructures from self‐assembled templates , 1996 .

[121]  Wei-Han Huang,et al.  Bioinspired Assembly of Colloidal Nanoplatelets by Electric Field , 2009 .

[122]  Eduardo Saiz,et al.  Freezing as a Path to Build Complex Composites , 2006, Science.

[123]  P. Hansma,et al.  Atomic force microscopy of the nacreous layer in mollusc shells , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[124]  R. Moreno,et al.  Alumina and alumina/zirconia multilayer composites obtained by slip casting , 1989 .

[125]  S. Kanzaki,et al.  Fracture Resistance Behavior of Multilayered Silicon Nitride , 2005 .

[126]  J. Aizenberg,et al.  Fibre-optical features of a glass sponge , 2003, Nature.

[127]  C. Brinker,et al.  Self-assembly of mesoscopically ordered chromatic polydiacetylene/silica nanocomposites , 2001, Nature.

[128]  Biqiong Chen,et al.  Ordered assemblies of clay nano-platelets , 2008, Bioinspiration & biomimetics.

[129]  S. Stankovich,et al.  Graphene-based composite materials , 2006, Nature.

[130]  Ludwig J. Gauckler,et al.  Platelet-reinforced polymer matrix composites by combined gel-casting and hot-pressing. Part II: Thermoplastic polyurethane matrix composites , 2010 .

[131]  Paul K. Hansma,et al.  Does Abalone Nacre Form by Heteroepitaxial Nucleation or by Growth through Mineral Bridges , 1997 .

[132]  G. Mayer,et al.  Rigid Biological Systems as Models for Synthetic Composites , 2005, Science.

[133]  Wenjian Wu,et al.  Evaporation-induced self-assembly of organic–inorganic ordered nanocomposite thin films that mimic nacre , 2006 .

[134]  T. Kunitake,et al.  Formation of a Novel CdS Cluster in an Organic Multilayer Template: A Case of an Organic/Inorganic Superlattice , 1995 .

[135]  Horacio Dante Espinosa,et al.  Mechanical properties of nacre constituents and their impact on mechanical performance , 2006 .

[136]  R. Ritchie,et al.  Tough, Bio-Inspired Hybrid Materials , 2008, Science.

[137]  C. H. Cáceres,et al.  Processing of tape-cast laminates prepared from fine alumina/zirconia powders , 1994 .

[138]  T. Chartier,et al.  Laminar ceramic composites , 1995 .

[139]  F. Cui,et al.  Crystal orientation, toughening mechanisms and a mimic of nacre , 2000 .