The Globus Pallidus Sends Reward-Related Signals to the Lateral Habenula

[1]  M. Delong,et al.  Activity of pallidal neurons during movement. , 1971, Journal of neurophysiology.

[2]  W. Nauta,et al.  Afferent connections of the habenular nuclei in the rat. A horseradish peroxidase study, with a note on the fiber‐of‐passage problem , 1977, The Journal of comparative neurology.

[3]  R. Porter,et al.  The monkey globus pallidus: neuronal discharge properties in relation to movement. , 1980, The Journal of physiology.

[4]  H. Kimura,et al.  A histochemical study of GABA-transaminase in the efferents of the pallidum , 1982, Brain Research.

[5]  F. Horak,et al.  Influence of globus pallidus on arm movements in monkeys. I. Effects of kainic acid-induced lesions. , 1984, Journal of neurophysiology.

[6]  M. D. Crutcher,et al.  Primate globus pallidus and subthalamic nucleus: functional organization. , 1985, Journal of neurophysiology.

[7]  K. Wilcox,et al.  Stimulation of the lateral habenula inhibits dopamine-containing neurons in the substantia nigra and ventral tegmental area of the rat , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  A. Crossman,et al.  Primate models of dyskinesia: The experimental approach to the study of basal ganglia-related involuntary movement disorders , 1987, Neuroscience.

[9]  L. Tremblay,et al.  Responses of pallidal neurons to striatal stimulation in intact waking monkeys , 1989, Brain Research.

[10]  A. Parent,et al.  Dopaminergic innervation of the basal ganglia in the squirrel monkey as revealed by tyrosine hydroxylase immunohistochemistry , 1989, The Journal of comparative neurology.

[11]  R. Strecker,et al.  Regulation of striatal serotonin release by the lateral habenula-dorsal raphe pathway in the rat as demonstrated by in vivo microdialysis: role of excitatory amino acids and GABA , 1989, Brain Research.

[12]  B Mazoyer,et al.  Obsessive-compulsive and other behavioural changes with bilateral basal ganglia lesions. A neuropsychological, magnetic resonance imaging and positron tomography study. , 1989, Brain : a journal of neurology.

[13]  L. Tremblay,et al.  Responses of pallidal neurons to striatal stimulation in monkeys with MPTP-induced parkinsonism , 1989, Brain Research.

[14]  S. Haber,et al.  The relationship between ventral striatal efferent fibers and the distribution of peptide-positive woolly fibers in the forebrain of the rhesus monkey , 1990, Neuroscience.

[15]  M. Delong,et al.  Electrophysiological studies of the functions of the nucleus basalis in primates. , 1991, Advances in experimental medicine and biology.

[16]  W T Thach,et al.  Basal ganglia motor control. III. Pallidal ablation: normal reaction time, muscle cocontraction, and slow movement. , 1991, Journal of neurophysiology.

[17]  R. Petralia,et al.  Light and electron immunocytochemical localization of AMPA‐selective glutamate receptors in the rat brain , 1992, The Journal of comparative neurology.

[18]  T. Hattori,et al.  Choline acetyltransferase-immunoreactive neurons in the rat entopeduncular nucleus , 1992, Neuroscience.

[19]  I. Vida,et al.  Glucose-sensitive neurons of the globus pallidus: II. Complex functional attributes , 1995, Brain Research Bulletin.

[20]  A. Parent,et al.  The pallidofugal projection system in primates: evidence for neurons branching ipsilaterally and contralaterally to the thalamus and brainstem , 1999, Journal of Chemical Neuroanatomy.

[21]  Bilateral pallidal lesions following major haemorrhage: description of a case , 2001, Journal of Neurology.

[22]  A. Parent,et al.  Two types of projection neurons in the internal pallidum of primates: Single‐axon tracing and three‐dimensional reconstruction , 2001, The Journal of comparative neurology.

[23]  R. Dolan,et al.  Psychology: Reward value of attractiveness and gaze , 2001, Nature.

[24]  N. Logothetis,et al.  Magnetic Resonance Imaging of Neuronal Connections in the Macaque Monkey , 2001, Neuron.

[25]  J. Molinuevo,et al.  Pure akinesia: An unusual phenotype of Hallervorden‐Spatz syndrome , 2003, Movement disorders : official journal of the Movement Disorder Society.

[26]  Jeffrey C. Cooper,et al.  Functional magnetic resonance imaging of reward prediction , 2005, Current opinion in neurology.

[27]  Kae Nakamura,et al.  Basal ganglia orient eyes to reward. , 2006, Journal of neurophysiology.

[28]  J. O'Doherty,et al.  Is Avoiding an Aversive Outcome Rewarding? Neural Substrates of Avoidance Learning in the Human Brain , 2006, PLoS biology.

[29]  P. Mazzoni,et al.  Anhedonia after a selective bilateral lesion of the globus pallidus. , 2006, The American journal of psychiatry.

[30]  J. O'Doherty,et al.  Reward Value Coding Distinct From Risk Attitude-Related Uncertainty Coding in Human Reward Systems , 2006, Journal of neurophysiology.

[31]  P. Shepard,et al.  Lateral Habenula Stimulation Inhibits Rat Midbrain Dopamine Neurons through a GABAA Receptor-Mediated Mechanism , 2007, The Journal of Neuroscience.

[32]  O. Hikosaka,et al.  Lateral habenula as a source of negative reward signals in dopamine neurons , 2007, Nature.

[33]  P. Kelly,et al.  A conductor hidden in the orchestra? Role of the habenular complex in monoamine transmission and cognition , 2007, Neuroscience & Biobehavioral Reviews.

[34]  Jill Keane,et al.  Disgust sensitivity predicts the insula and pallidal response to pictures of disgusting foods , 2007, The European journal of neuroscience.

[35]  Saori C. Tanaka,et al.  Serotonin Differentially Regulates Short- and Long-Term Prediction of Rewards in the Ventral and Dorsal Striatum , 2007, PloS one.

[36]  R. Dolan,et al.  How the Brain Translates Money into Force: A Neuroimaging Study of Subliminal Motivation , 2007, Science.

[37]  K. Campbell,et al.  A neural correlate of response bias in monkey caudate nucleus , 2022 .