暂无分享,去创建一个
[1] Gianluigi Rozza,et al. Reduced basis approximation and a-posteriori error estimation for the coupled Stokes-Darcy system , 2015, Adv. Comput. Math..
[2] Robert Lipton,et al. Optimal Local Approximation Spaces for Generalized Finite Element Methods with Application to Multiscale Problems , 2010, Multiscale Model. Simul..
[3] Andreas Buhr,et al. Towards Automatic and Reliable Localized Model Order Reduction , 2019, ArXiv.
[4] Antti Hannukainen,et al. PU-CPI solution of Laplacian eigenvalue problems , 2020, ArXiv.
[5] Thomas J. R. Hughes,et al. A space-time formulation for multiscale phenomena , 1996 .
[6] T. Hughes,et al. The variational multiscale method—a paradigm for computational mechanics , 1998 .
[7] Jacques Simeon,et al. Compact Sets in the Space L~(O, , 2005 .
[9] Olof B. Widlund,et al. DUAL-PRIMAL FETI METHODS FOR THREE-DIMENSIONAL ELLIPTIC PROBLEMS WITH HETEROGENEOUS COEFFICIENTS , 2022 .
[10] Axel Klawonn,et al. Multiscale coarse spaces for overlapping Schwarz methods based on the ACMS space in 2D , 2018 .
[11] Houman Owhadi,et al. Gamblets for opening the complexity-bottleneck of implicit schemes for hyperbolic and parabolic ODEs/PDEs with rough coefficients , 2016, J. Comput. Phys..
[12] D. Rovas,et al. A blackbox reduced-basis output bound method for noncoercive linear problems , 2002 .
[13] I. Babuska,et al. The partition of unity finite element method: Basic theory and applications , 1996 .
[14] I. Babuska,et al. Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .
[15] Daniel Kressner,et al. A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.
[16] Bernard Haasdonk,et al. THE LOCALIZED REDUCED BASIS MULTISCALE METHOD , 2015 .
[17] A. Kolmogoroff,et al. Uber Die Beste Annaherung Von Funktionen Einer Gegebenen Funktionenklasse , 1936 .
[18] Thomas Y. Hou,et al. Exponential Convergence for Multiscale Linear Elliptic PDEs via Adaptive Edge Basis Functions , 2020, ArXiv.
[19] Thomas Y. Hou,et al. A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .
[20] J. Lions,et al. Non-homogeneous boundary value problems and applications , 1972 .
[21] Anthony T. Patera,et al. A Static condensation Reduced Basis Element method: approximation and a posteriori error estimation , 2013 .
[22] Nathan Halko,et al. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..
[23] E Weinan,et al. The heterogeneous multiscale method* , 2012, Acta Numerica.
[24] Gianluigi Rozza,et al. A reduced basis hybrid method for the coupling of parametrized domains represented by fluidic networks , 2012 .
[25] A. Pinkus. n-Widths in Approximation Theory , 1985 .
[26] H. Owhadi,et al. Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization , 2012, 1212.0812.
[27] Anthony T. Patera,et al. A Localization Strategy for Data Assimilation; Application to State Estimation and Parameter Estimation , 2018, SIAM J. Sci. Comput..
[28] Kathrin Smetana,et al. Randomized Local Model Order Reduction , 2017, SIAM J. Sci. Comput..
[29] K. Nyström,et al. Boundary estimates for solutions to linear degenerate parabolic equations , 2015 .
[30] D. B. P. Huynh,et al. Data‐driven physics‐based digital twins via a library of component‐based reduced‐order models , 2020, International Journal for Numerical Methods in Engineering.
[31] Houman Owhadi,et al. Multigrid with Rough Coefficients and Multiresolution Operator Decomposition from Hierarchical Information Games , 2015, SIAM Rev..
[32] M. Choulli. Local boundedness property for parabolic BVP's and the gaussian upper bound for their Green functions , 2013, 1309.5903.
[33] Karsten Urban,et al. An improved error bound for reduced basis approximation of linear parabolic problems , 2013, Math. Comput..
[34] J. Aramaki. POINCARE INEQUALITY AND CAMPANATO ESTIMATES FOR WEAK SOLUTIONS OF PARABOLIC EQUATIONS , 2016 .
[35] Houman Owhadi,et al. Localized Bases for Finite-Dimensional Homogenization Approximations with Nonseparated Scales and High Contrast , 2010, Multiscale Model. Simul..
[36] Gaussian estimates for fundamental solutions of second order parabolic systems with time-independent coefficients , 2007, 0704.1372.
[37] Yalchin Efendiev,et al. Generalized multiscale finite element methods for space-time heterogeneous parabolic equations , 2016, Comput. Math. Appl..
[38] Anthony T. Patera,et al. Optimal Local Approximation Spaces for Component-Based Static Condensation Procedures , 2016, SIAM J. Sci. Comput..
[39] Stephen J. Wright,et al. Randomized Sampling for Basis Function Construction in Generalized Finite Element Methods , 2018, Multiscale Model. Simul..
[40] Anthony T. Patera,et al. Port reduction in parametrized component static condensation: approximation and a posteriori error estimation , 2013 .
[41] Mario Ohlberger,et al. Localized model reduction for parameterized problems , 2019, 1902.08300.
[42] J. Simon. Compact sets in the spaceLp(O,T; B) , 1986 .
[43] M. Struwe. On the Hölder continuity of bounded weak solutions of quasilinear parabolic systems , 1981 .
[44] Yalchin Efendiev,et al. Generalized multiscale finite element methods (GMsFEM) , 2013, J. Comput. Phys..
[45] Michael Griebel,et al. A Particle-Partition of Unity Method for the Solution of Elliptic, Parabolic, and Hyperbolic PDEs , 2000, SIAM J. Sci. Comput..
[46] Global estimates for nonlinear parabolic equations , 2013, 1301.1872.
[47] Yvon Maday,et al. The Reduced Basis Element Method: Application to a Thermal Fin Problem , 2004, SIAM J. Sci. Comput..
[48] Martin J. Gander,et al. Optimized Schwarz Methods , 2006, SIAM J. Numer. Anal..
[49] Ivo Babuška,et al. Machine Computation Using the Exponentially Convergent Multiscale Spectral Generalized Finite Element Method , 2014 .
[50] Kathrin Smetana,et al. Static Condensation Optimal Port/Interface Reduction and Error Estimation for Structural Health Monitoring , 2018, IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22–25, 2018.
[51] Pingwen Zhang,et al. Analysis of the heterogeneous multiscale method for parabolic homogenization problems , 2007, Math. Comput..
[52] Daniel Peterseim,et al. Localization of elliptic multiscale problems , 2011, Math. Comput..
[53] Roman Andreev,et al. Stability of space-time Petrov-Galerkin discretizations for parabolic evolution equations , 2012 .
[54] Ivo Babuska,et al. Multiscale-Spectral GFEM and Optimal Oversampling , 2019, ArXiv.
[55] Anna Persson,et al. Multiscale techniques for parabolic equations , 2015, Numerische Mathematik.
[56] Knut-Andreas Lie,et al. The localized reduced basis multiscale method for two‐phase flows in porous media , 2014, 1405.2810.
[57] E. Gildin,et al. Localized model order reduction in porous media flow simulation , 2016 .
[58] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[59] Yvon Maday,et al. A Reduced-Basis Element Method , 2002, J. Sci. Comput..
[60] Andrea Pierenrico Ferrero,et al. Global and local POD models for the prediction of compressible flows with DG methods , 2018, International Journal for Numerical Methods in Engineering.