Optimal local approximation spaces for parabolic problems

We propose local space-time approximation spaces for parabolic problems that are optimal in the sense of Kolmogorov and may be employed in multiscale and domain decomposition methods. The diffusion coefficient can be arbitrarily rough in space and time. To construct local approximation spaces we consider a compact transfer operator that acts on the space of local solutions and covers the full time dimension. The optimal local spaces are then given by the left singular vectors of the transfer operator. To proof compactness of the latter we combine a suitable parabolic Caccioppoli inequality with the compactness theorem of Aubin-Lions. In contrast to the elliptic setting [I. Babu\v{s}ka and R. Lipton, Multiscale Model. Simul., 9 (2011), pp. 373-406] we need an additional regularity result to combine the two results. Furthermore, we employ the generalized finite element method to couple local spaces and construct an approximation of the global solution. Since our approach yields reduced space-time bases, the computation of the global approximation does not require a time stepping method and is thus computationally efficient. Moreover, we derive rigorous local and global a priori error bounds. In detail, we bound the global approximation error in a graph norm by the local errors in the $L^2(H^1)$-norm, noting that the space the transfer operator maps to is equipped with this norm. Numerical experiments demonstrate an exponential decay of the singular values of the transfer operator and the local and global approximation errors for problems with high contrast or multiscale structure regarding space and time.

[1]  Gianluigi Rozza,et al.  Reduced basis approximation and a-posteriori error estimation for the coupled Stokes-Darcy system , 2015, Adv. Comput. Math..

[2]  Robert Lipton,et al.  Optimal Local Approximation Spaces for Generalized Finite Element Methods with Application to Multiscale Problems , 2010, Multiscale Model. Simul..

[3]  Andreas Buhr,et al.  Towards Automatic and Reliable Localized Model Order Reduction , 2019, ArXiv.

[4]  Antti Hannukainen,et al.  PU-CPI solution of Laplacian eigenvalue problems , 2020, ArXiv.

[5]  Thomas J. R. Hughes,et al.  A space-time formulation for multiscale phenomena , 1996 .

[6]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[7]  Jacques Simeon,et al.  Compact Sets in the Space L~(O, , 2005 .

[9]  Olof B. Widlund,et al.  DUAL-PRIMAL FETI METHODS FOR THREE-DIMENSIONAL ELLIPTIC PROBLEMS WITH HETEROGENEOUS COEFFICIENTS , 2022 .

[10]  Axel Klawonn,et al.  Multiscale coarse spaces for overlapping Schwarz methods based on the ACMS space in 2D , 2018 .

[11]  Houman Owhadi,et al.  Gamblets for opening the complexity-bottleneck of implicit schemes for hyperbolic and parabolic ODEs/PDEs with rough coefficients , 2016, J. Comput. Phys..

[12]  D. Rovas,et al.  A blackbox reduced-basis output bound method for noncoercive linear problems , 2002 .

[13]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[14]  I. Babuska,et al.  Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .

[15]  Daniel Kressner,et al.  A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.

[16]  Bernard Haasdonk,et al.  THE LOCALIZED REDUCED BASIS MULTISCALE METHOD , 2015 .

[17]  A. Kolmogoroff,et al.  Uber Die Beste Annaherung Von Funktionen Einer Gegebenen Funktionenklasse , 1936 .

[18]  Thomas Y. Hou,et al.  Exponential Convergence for Multiscale Linear Elliptic PDEs via Adaptive Edge Basis Functions , 2020, ArXiv.

[19]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[20]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[21]  Anthony T. Patera,et al.  A Static condensation Reduced Basis Element method: approximation and a posteriori error estimation , 2013 .

[22]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[23]  E Weinan,et al.  The heterogeneous multiscale method* , 2012, Acta Numerica.

[24]  Gianluigi Rozza,et al.  A reduced basis hybrid method for the coupling of parametrized domains represented by fluidic networks , 2012 .

[25]  A. Pinkus n-Widths in Approximation Theory , 1985 .

[26]  H. Owhadi,et al.  Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization , 2012, 1212.0812.

[27]  Anthony T. Patera,et al.  A Localization Strategy for Data Assimilation; Application to State Estimation and Parameter Estimation , 2018, SIAM J. Sci. Comput..

[28]  Kathrin Smetana,et al.  Randomized Local Model Order Reduction , 2017, SIAM J. Sci. Comput..

[29]  K. Nyström,et al.  Boundary estimates for solutions to linear degenerate parabolic equations , 2015 .

[30]  D. B. P. Huynh,et al.  Data‐driven physics‐based digital twins via a library of component‐based reduced‐order models , 2020, International Journal for Numerical Methods in Engineering.

[31]  Houman Owhadi,et al.  Multigrid with Rough Coefficients and Multiresolution Operator Decomposition from Hierarchical Information Games , 2015, SIAM Rev..

[32]  M. Choulli Local boundedness property for parabolic BVP's and the gaussian upper bound for their Green functions , 2013, 1309.5903.

[33]  Karsten Urban,et al.  An improved error bound for reduced basis approximation of linear parabolic problems , 2013, Math. Comput..

[34]  J. Aramaki POINCARE INEQUALITY AND CAMPANATO ESTIMATES FOR WEAK SOLUTIONS OF PARABOLIC EQUATIONS , 2016 .

[35]  Houman Owhadi,et al.  Localized Bases for Finite-Dimensional Homogenization Approximations with Nonseparated Scales and High Contrast , 2010, Multiscale Model. Simul..

[36]  Gaussian estimates for fundamental solutions of second order parabolic systems with time-independent coefficients , 2007, 0704.1372.

[37]  Yalchin Efendiev,et al.  Generalized multiscale finite element methods for space-time heterogeneous parabolic equations , 2016, Comput. Math. Appl..

[38]  Anthony T. Patera,et al.  Optimal Local Approximation Spaces for Component-Based Static Condensation Procedures , 2016, SIAM J. Sci. Comput..

[39]  Stephen J. Wright,et al.  Randomized Sampling for Basis Function Construction in Generalized Finite Element Methods , 2018, Multiscale Model. Simul..

[40]  Anthony T. Patera,et al.  Port reduction in parametrized component static condensation: approximation and a posteriori error estimation , 2013 .

[41]  Mario Ohlberger,et al.  Localized model reduction for parameterized problems , 2019, 1902.08300.

[42]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[43]  M. Struwe On the Hölder continuity of bounded weak solutions of quasilinear parabolic systems , 1981 .

[44]  Yalchin Efendiev,et al.  Generalized multiscale finite element methods (GMsFEM) , 2013, J. Comput. Phys..

[45]  Michael Griebel,et al.  A Particle-Partition of Unity Method for the Solution of Elliptic, Parabolic, and Hyperbolic PDEs , 2000, SIAM J. Sci. Comput..

[46]  Global estimates for nonlinear parabolic equations , 2013, 1301.1872.

[47]  Yvon Maday,et al.  The Reduced Basis Element Method: Application to a Thermal Fin Problem , 2004, SIAM J. Sci. Comput..

[48]  Martin J. Gander,et al.  Optimized Schwarz Methods , 2006, SIAM J. Numer. Anal..

[49]  Ivo Babuška,et al.  Machine Computation Using the Exponentially Convergent Multiscale Spectral Generalized Finite Element Method , 2014 .

[50]  Kathrin Smetana,et al.  Static Condensation Optimal Port/Interface Reduction and Error Estimation for Structural Health Monitoring , 2018, IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22–25, 2018.

[51]  Pingwen Zhang,et al.  Analysis of the heterogeneous multiscale method for parabolic homogenization problems , 2007, Math. Comput..

[52]  Daniel Peterseim,et al.  Localization of elliptic multiscale problems , 2011, Math. Comput..

[53]  Roman Andreev,et al.  Stability of space-time Petrov-Galerkin discretizations for parabolic evolution equations , 2012 .

[54]  Ivo Babuska,et al.  Multiscale-Spectral GFEM and Optimal Oversampling , 2019, ArXiv.

[55]  Anna Persson,et al.  Multiscale techniques for parabolic equations , 2015, Numerische Mathematik.

[56]  Knut-Andreas Lie,et al.  The localized reduced basis multiscale method for two‐phase flows in porous media , 2014, 1405.2810.

[57]  E. Gildin,et al.  Localized model order reduction in porous media flow simulation , 2016 .

[58]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[59]  Yvon Maday,et al.  A Reduced-Basis Element Method , 2002, J. Sci. Comput..

[60]  Andrea Pierenrico Ferrero,et al.  Global and local POD models for the prediction of compressible flows with DG methods , 2018, International Journal for Numerical Methods in Engineering.