An overview of differential mobility analyzers for size classification of nanometer-sized aerosol particles

Size classification of nanoparticles is an important process in the electrical mobility particle size analyzer. The differential mobility analyzer (DMA) is one of the most commonly used devices for classifying and measuring nanometersized aerosol particles between 1 nm to 1 µm in diameter, based on their electrical mobility. The DMA can be described as an assembly of two concentrically cylindrical electrodes with an air gap between the walls. In the DMA, air and aerosol flows enter from one end, pass through the annulus and exit the other end. An electric field is applied between the inner and outer electrodes. Particles having a specific mobility exit with the monodisperse air flow through a small slit located at the bottom of the inner electrode. These particles are transferred to a particle counter to determine the particle number concentration. In the past several decades, there have been numerous extensive studies and developments on the DMA. Nonetheless, they are different in terms of specific applications, construction, particle size range, as well as time response and resolution. The purpose of this article is to provide an overview of the state-of-the-art existing cylindrical DMAs for aerosol particle size classification as well as for the generation of monodisperse aerosol in nanometer size range. A description of the operating principles, detailed physical characteristics of these DMAs, including the single-channel and multi-channel DMAs, as well as some examples of applications to nanotechnology are given.

[1]  N. Tippayawong,et al.  Brownian diffusion effect on nanometer aerosol classification in electrical mobility spectrometer , 2009 .

[2]  P. Martínez-Lozano,et al.  Resolution improvements of a nano-DMA operating transonically , 2006 .

[3]  E. Cunningham On the Velocity of Steady Fall of Spherical Particles through Fluid Medium , 1910 .

[4]  R. Flagan On Differential Mobility Analyzer Resolution , 1999 .

[5]  Benjamin Y. H. Liu,et al.  A submicron aerosol standard and the primary, absolute calibration of the condensation nuclei counter , 1974 .

[6]  A. Wiedensohler,et al.  Determination of Differential Mobility Analyzer Transfer Functions Using Identical Instruments in Series , 1997 .

[7]  Hannes Tammet,et al.  Electrical aerosol spectrometer of Tartu University , 1998 .

[8]  N. Tippayawong,et al.  An Electrical Mobility Spectrometer for Aerosol Size Distribution Measurement , 2006 .

[9]  K. Takeuchi,et al.  A new dual-type DMA for measuring nanoparticles emitted from combustion engines , 2005 .

[10]  Richard C. Flagan,et al.  Scanning Electrical Mobility Spectrometer , 1989 .

[11]  Panich Intra Aerosol size measurement system using electrical mobility technique = ระบบการวัดขนาดละอองลอยในอากาศโดยใช้เทคนิคการเคลื่อนตัวทางไฟฟ้า / Panich Intra , 2006 .

[12]  R. Flagan,et al.  Radial Differential Mobility Analyzer for One Nanometer Particle Classification , 2009 .

[13]  K. T. Whitby,et al.  Aerosol classification by electric mobility: apparatus, theory, and applications , 1975 .

[14]  N. Tippayawong,et al.  Aerosol Size Distribution Measurement Using Multi-Channel Electrical Mobility Sensor , 2006 .

[15]  K. Okuyama,et al.  Development of an LDMA-FCE System for the Measurement of Submicron Aerosol Particles , 2005 .

[16]  Heinz Fissan,et al.  Design and evaluation of a nanometer aerosol differential mobility analyzer (Nano-DMA) , 1998 .

[17]  Jonathan Grudin,et al.  Design and evaluation , 1995 .

[18]  S. Rosser,et al.  Vienna-Type DMA of High Resolution and High Flow Rate , 2005 .

[19]  Seville Chapman Carrier Mobility Spectra of Spray Electrified Liquids , 1937 .

[20]  H. Erikson On The Effect of the Medium on Gas Ion Mobility , 1927 .

[21]  Da-Ren Chen,et al.  Nanometer differential mobility analyzer (Nano-DMA): Experimental evaluation and performance verification , 1996 .

[22]  A. Mirme Electric aerosol spectrometry , 1994 .

[23]  A. Berner,et al.  A new electromobility spectrometer for the measurement of aerosol size distributions in the size range from 1 to 1000 nm , 1991 .

[24]  H. Erikson On the Nature of the Negative and Positive Ions in Air, Oxygen and Nitrogen , 1922 .

[25]  K. Okuyama,et al.  Determination of particle size distribution of ultra-fine aerosols using a differential mobility analyzer , 1985 .

[26]  G. W. Hewitt The charging of small particles for electrostatic precipitation , 1957, Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics.

[27]  J. Rosell-Llompart,et al.  Sizing nanoparticles and ions with a short differential mobility analyzer , 1996 .

[28]  Nick Collings,et al.  Description and Theoretical Analysis of a Differential Mobility Spectrometer , 2005 .

[29]  P. Martínez-Lozano,et al.  Experimental tests of a nano-DMA with no voltage change between aerosol inlet and outlet slits , 2006 .

[30]  J. F. D. L. Mora,et al.  High resolution size analysis of nanoparticles and ions , 1998 .

[31]  W.C.A. Hutchinson,et al.  Atmospheric electricity, vol. II, Felkds, Charges, currents , 1975 .

[32]  K. T. Whitby,et al.  The Aerosol Size Distribution of Los Angeles Smog , 1972 .

[33]  Brant C. White,et al.  United States patent , 1985 .

[34]  Detlef Hummes,et al.  Experimental Comparison of Four Differential Mobility Analyzers for Nanometer Aerosol Measurements , 1996 .

[35]  M. Karlsson,et al.  Methodology to Estimate the Transfer Function of Individual Differential Mobility Analyzers , 2001 .

[36]  Kikuo Okuyama,et al.  Effect of brownian diffusion on electrical classification of ultrafine aerosol particles in differential mobility analyzer , 1986 .

[37]  Benjamin Y. H. Liu,et al.  On the performance of the electrical aerosol analyzer , 1975 .

[38]  Hermann Rohmann Methode zur Messung der Größe von Schwebeteilchen , 1923 .

[39]  Richard C. Flagan,et al.  History of Electrical Aerosol Measurements , 1998 .

[40]  Kikuo Okuyama,et al.  Size distribution measurement of nanometer-sized aerosol particles using dma under low-pressure conditions , 1997 .

[41]  M. Karlsson,et al.  Methods to measure and predict the transfer function size dependence of individual DMAs , 2003 .

[42]  Heinz Fissan,et al.  Determination of particle size distributions by means of an electrostatic classifier , 1983 .

[43]  Hannes Tammet,et al.  The aspiration method for the Determination of Atmospheric-Ion Spectra , 1970 .

[44]  K. T. Whitby,et al.  Electric aerosol particle counting and size distribution measuring system for the 0.015 to 1 ? size range , 1966 .

[45]  J. Mora,et al.  Differential mobility analysis of molecular ions and nanometer particles , 1998 .

[46]  Da-Ren Chen,et al.  Nanometer Differential Mobility Analyzer (Nano-DMA): Design and numerical modeling , 1996 .

[47]  Da-Ren Chen,et al.  Numerical modeling of the performance of differential mobility analyzers for nanometer aerosol measurements , 1997 .

[48]  W. A. Hoppel Determination of the aerosol size distribution from the mobility distribution of the charged fraction of aerosols , 1978 .