Fast Scalar and Vectorial Grayscale Based Invariant Features for 3D Cell Nuclei Localization and Classification
暂无分享,去创建一个
Thorsten Schmidt | Klaus Palme | Hans Burkhardt | Olaf Ronneberger | Alexander Dovzhenko | Janina Schulz | Taras Pasternak
[1] Dana H. Ballard,et al. Generalizing the Hough transform to detect arbitrary shapes , 1981, Pattern Recognit..
[2] Hans Burkhardt,et al. General-purpose object recognition in 3D volume data sets using gray-scale invariants - classification of airborne pollen-grains recorded with a confocal laser scanning microscope , 2002, Object recognition supported by user interaction for service robots.
[3] R. Waterston,et al. Automated cell lineage tracing in Caenorhabditis elegans. , 2006, Proceedings of the National Academy of Sciences of the United States of America.
[4] Thomas M. Breuel,et al. Automated Feature Selection for the Classification of Meningioma Cell Nuclei , 2006, Bildverarbeitung für die Medizin.
[5] Hans Burkhardt,et al. Invariant Features for 3D-Data based on Group Integration using Directional Information and Spherical Harmonic Expansion , 2006, 18th International Conference on Pattern Recognition (ICPR'06).
[6] Szymon Rusinkiewicz,et al. Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors , 2003, Symposium on Geometry Processing.
[7] G LoweDavid,et al. Distinctive Image Features from Scale-Invariant Keypoints , 2004 .
[8] Thomas Martin Deserno,et al. Bildverarbeitung für die Medizin: Grundlagen, Modelle, Methoden, Anwendungen , 1997, Bildverarbeitung für die Medizin.
[9] Hans Burkhardt,et al. Self-learning Segmentation and Classification of Cell-Nuclei in 3D Volumetric Data Using Voxel-Wise Gray Scale Invariants , 2005, DAGM-Symposium.
[10] Hanns Schulz-Mirbach,et al. Invariant Features for Gray Scale Images , 1995, DAGM-Symposium.