We successfully developed a process to fabricate freestanding cubic aluminium nitride (c-AlN) membranes containing cubic gallium nitride (c-GaN) quantum dots (QDs). The samples were grown by plasma assisted molecular beam epitaxy (MBE). To realize the photonic crystal (PhC) membrane we have chosen a triangular array of holes. The array was fabricated by electron beam lithography and several steps of reactive ion etching (RIE) with the help of a hard mask and an undercut of the active layer. The r/a- ratio of 0.35 was deter- mined by numerical simulations to obtain a preferably wide photonic band gap. Micro-photoluminescence (μ-PL) measurements of the photonic crystals, in particular of a H1 and a L3 cavity, and the emission of the QD ensemble were performed to characterize the samples. The PhCs show high quality factors of 4400 for the H1 cavity and about 5000/3000 for two different modes of the L3 cavity, respectively. The energy of the fundamental modes is in good agreement to the numerical simulations.