Continuous Empirical Characteristic Function Estimation of Mixtures of Normal Parameters

This article develops an efficient method for estimating the discrete mixtures of normal family based on the continuous empirical characteristic function (CECF). An iterated estimation procedure based on the closed form objective distance function is proposed to improve the estimation efficiency. The results from the Monte Carlo simulation reveal that the CECF estimator produces good finite sample properties. In particular, it outperforms the discrete type of methods when the maximum likelihood estimation fails to converge. An empirical example is provided for illustrative purposes.

[1]  Stanley J. Kon Models of Stock Returns—A Comparison , 1984 .

[2]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[3]  K. French Stock returns and the weekend effect , 1980 .

[4]  R. Quandt A New Approach to Estimating Switching Regressions , 1972 .

[5]  A. Paulson,et al.  The estimation of the parameters of the stable laws , 1975 .

[6]  P. Deb Finite Mixture Models , 2008 .

[7]  N. E. Day Estimating the components of a mixture of normal distributions , 1969 .

[8]  D. M. Titterington,et al.  On the deter-mination of the number of components in a mixture , 1998 .

[9]  H. Akaike A new look at the statistical model identification , 1974 .

[10]  Hamparsum Bozdogan,et al.  Mixture-Model Cluster Analysis Using Model Selection Criteria and a New Informational Measure of Complexity , 1994 .

[11]  Richard E. Quandt,et al.  The Econometrics Of Disequilibrium , 1988 .

[12]  Empirical Characteristic Function in Time Series Estimation , 2001 .

[13]  A. Cohen,et al.  Finite Mixture Distributions , 1982 .

[14]  Jun Yu,et al.  EMPIRICAL CHARACTERISTIC FUNCTION IN TIME SERIES ESTIMATION , 2001, Econometric Theory.

[15]  Jun Yu Empirical Characteristic Function Estimation and Its Applications , 2003 .

[16]  G. J. Jiang,et al.  Estimation of Continuous-Time Processes via the Empirical Characteristic Function , 2002 .

[17]  J. B. Ramsey,et al.  Estimating Mixtures of Normal Distributions and Switching Regressions , 1978 .

[18]  Peter Schmidt,et al.  An Improved Version of the Quandt-Ramsey MGE Estimator for Mixtures of Normal Distributions and Switching Regressions , 1982 .

[19]  G. McLachlan On Bootstrapping the Likelihood Ratio Test Statistic for the Number of Components in a Normal Mixture , 1987 .

[20]  Geoffrey J. McLachlan,et al.  Mixture models : inference and applications to clustering , 1989 .

[21]  L. Wasserman,et al.  Computing Bayes Factors by Combining Simulation and Asymptotic Approximations , 1997 .

[22]  Kien C. Tran Estimating mixtures of normal distributions via empirical characteristic function , 1998 .

[23]  C. R. Heathcote,et al.  The integrated squared error estimation of parameters , 1977 .

[24]  H. Bozdogan Choosing the Number of Component Clusters in the Mixture-Model Using a New Informational Complexity Criterion of the Inverse-Fisher Information Matrix , 1993 .

[25]  N. Mendell,et al.  Simulated percentage points for the null distribution of the likelihood ratio test for a mixture of two normals. , 1988, Biometrics.

[26]  S. Csörgo Empirical characteristic functions , 1980 .

[27]  A. Cohen,et al.  Estimation in Mixtures of Two Normal Distributions , 1967 .

[28]  Jun Yu Empirical Characteristic Function Estimation and Its Applications , 2003 .

[29]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[30]  Z. D. Feng,et al.  Using Bootstrap Likelihood Ratio in Finite Mixture Models , 1994 .

[31]  A. Feuerverger,et al.  The Empirical Characteristic Function and Its Applications , 1977 .