Small signal modulation characteristics of red-emitting (λ = 610 nm) III-nitride nanowire array lasers on (001) silicon

The small signal modulation characteristics of an InGaN/GaN nanowire array edge- emitting laser on (001) silicon are reported. The emission wavelength is 610 nm. Lattice matched InAlN cladding layers were incorporated in the laser heterostructure for better mode confinement. The suitability of the nanowire lasers for use in plastic fiber communication systems with direct modulation is demonstrated through their modulation bandwidth of f-3dB,max = 3.1 GHz, very low values of chirp (0.8 A) and α-parameter, and large differential gain (3.1 × 10−17 cm2).

[1]  Lawrence H. Robins,et al.  Steady-state and time-resolved photoluminescence from relaxed and strained GaN nanowires grown by catalyst-free molecular-beam epitaxy , 2008 .

[2]  A. A. Ukhanov,et al.  Comparison of the carrier induced refractive index, gain, and linewidth enhancement factor in quantum dot and quantum well lasers , 2004 .

[3]  Shuji Nakamura,et al.  Future of group-III nitride semiconductor green laser diodes [Invited] , 2010 .

[4]  Tilman Schimpke,et al.  Red-Emitting ( \(\lambda = 610\) nm) In0.51Ga0.49N/GaN Disk-in-Nanowire Light Emitting Diodes on Silicon , 2014, IEEE Journal of Quantum Electronics.

[5]  Kazuhiko Itaya,et al.  InGaAlP visible light laser diodes and light-emitting diodes , 1994 .

[6]  Pallab Bhattacharya,et al.  Continuous-wave operation and differential gain of InGaN/GaN quantum dot ridge waveguide lasers (λ = 420 nm) on c-plane GaN substrate , 2012 .

[7]  Xiangfeng Duan,et al.  Laser-Assisted Catalytic Growth of Single Crystal GaN Nanowires , 2000 .

[8]  J. Ristić,et al.  Wurtzite GaN nanocolumns grown on Si(001) by molecular beam epitaxy , 2006 .

[9]  Kai Cui,et al.  Full-color InGaN/GaN dot-in-a-wire light emitting diodes on silicon , 2011, Nanotechnology.

[10]  P. Bhattacharya,et al.  Temperature-dependent measurement of Auger recombination in In0.40Ga0.60N/GaN red-emitting (λ = 630 nm) quantum dots , 2014 .

[11]  P. Bhattacharya,et al.  Electrically driven polarized single-photon emission from an InGaN quantum dot in a GaN nanowire , 2013, Nature Communications.

[12]  S. Nakamura,et al.  Room‐temperature continuous‐wave operation of InGaN multi‐quantum‐well structure laser diodes , 1996 .

[13]  P. Bhattacharya,et al.  A InGaN/GaN quantum dot green (λ=524 nm) laser , 2011 .

[14]  Adrian Avramescu,et al.  InGaN laser diodes with 50 mW output power emitting at 515 nm , 2009 .

[15]  James S. Speck,et al.  Demonstration of 505 nm laser diodes using wavelength-stable semipolar (2021¯) InGaN/GaN quantum wells , 2011 .

[16]  P. Bhattacharya,et al.  Auger recombination in III-nitride nanowires and its effect on nanowire light-emitting diode characteristics. , 2011, Nano letters.

[17]  Masahiro Asada,et al.  Spectral Characteristics of Linewidth Enhancement Factor α of Multidimensional Quantum Wells , 1989 .

[18]  Martin Strassburg,et al.  Molecular beam epitaxial growth and optical properties of red-emitting (λ = 650 nm) InGaN/GaN disks-in-nanowires on silicon , 2013 .

[19]  J. Grandal,et al.  A growth diagram for plasma-assisted molecular beam epitaxy of GaN nanocolumns on Si(111) , 2009, 2401.16328.

[20]  B. Hakki,et al.  Gain spectra in GaAs double−heterostructure injection lasers , 1975 .

[21]  Pallab Bhattacharya,et al.  Monolithic electrically injected nanowire array edge-emitting laser on (001) silicon. , 2014, Nano letters.

[22]  P. Bhattacharya,et al.  Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy. , 2010, Nano letters.

[23]  S. Reitzenstein,et al.  Direct comparison of catalyst-free and catalyst-induced GaN nanowires , 2010 .

[24]  K. Kishino,et al.  InGaN/GaN Multiple Quantum Disk Nanocolumn Light-Emitting Diodes Grown on (111) Si Substrate , 2004 .

[25]  Pallab Bhattacharya,et al.  High Performance InAs/${\rm In}_{0.53}{\rm Ga}_{0.23}{\rm Al}_{0.24}{\rm As}$/InP Quantum Dot 1.55 $\mu{\rm m}$ Tunnel Injection Laser , 2014, IEEE Journal of Quantum Electronics.

[26]  M. Toida,et al.  Effect of 630-NM pulsed laser irradiation on the proliferation of HeLa cells in Photofrin(®)-mediated photodynamic therapy. , 2011, Laser therapy.