Feature Selection for Density Level-Sets

A frequent problem in density level-set estimation is the choice of the right features that give rise to compact and concise representations of the observed data. We present an efficient feature selection method for density level-set estimation where optimal kernel mixing coefficients and model parameters are determined simultaneously. Our approach generalizes one-class support vector machines and can be equivalently expressed as a semi-infinite linear program that can be solved with interleaved cutting plane algorithms. The experimental evaluation of the new method on network intrusion detection and object recognition tasks demonstrate that our approach not only attains competitive performance but also spares practitioners from a priori decisions on feature sets to be used.

[1]  Thorsten Joachims,et al.  Making large scale SVM learning practical , 1998 .

[2]  Philip K. Chan,et al.  Learning nonstationary models of normal network traffic for detecting novel attacks , 2002, KDD.

[3]  Gunnar Rätsch,et al.  Large Scale Multiple Kernel Learning , 2006, J. Mach. Learn. Res..

[4]  Bernhard Schölkopf,et al.  Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.

[5]  Feng Yong,et al.  Intrusion Detection Based on Density Level Sets Estimation , 2008, 2008 International Conference on Networking, Architecture, and Storage.

[6]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[7]  Jieping Ye,et al.  Multi-label Multiple Kernel Learning , 2008, NIPS.

[8]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[9]  Salvatore J. Stolfo,et al.  Anagram: A Content Anomaly Detector Resistant to Mimicry Attack , 2006, RAID.

[10]  Konrad Rieck,et al.  Detecting Unknown Network Attacks Using Language Models , 2006, DIMVA.

[11]  Yves Grandvalet,et al.  More efficiency in multiple kernel learning , 2007, ICML '07.

[13]  Christoph H. Lampert,et al.  A Multiple Kernel Learning Approach to Joint Multi-class Object Detection , 2008, DAGM-Symposium.

[14]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2004 .

[15]  Cordelia Schmid,et al.  Learning Object Representations for Visual Object Class Recognition , 2007, ICCV 2007.

[16]  Cordelia Schmid,et al.  Semantic Hierarchies for Visual Object Recognition , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Jianguo Zhang,et al.  The PASCAL Visual Object Classes Challenge , 2006 .

[18]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[19]  Zenglin Xu,et al.  An Extended Level Method for Efficient Multiple Kernel Learning , 2008, NIPS.

[20]  Michael I. Jordan,et al.  Multiple kernel learning, conic duality, and the SMO algorithm , 2004, ICML.

[21]  LeeWenke,et al.  A framework for constructing features and models for intrusion detection systems , 2000 .

[22]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, CVPR Workshops.

[23]  Cheng Soon Ong,et al.  Multiclass multiple kernel learning , 2007, ICML '07.

[24]  Konrad Rieck,et al.  Language models for detection of unknown attacks in network traffic , 2006, Journal in Computer Virology.

[25]  Nello Cristianini,et al.  Learning the Kernel Matrix with Semidefinite Programming , 2002, J. Mach. Learn. Res..

[26]  O. Chapelle Second order optimization of kernel parameters , 2008 .

[27]  Pavel Laskov,et al.  Detection of Intrusions and Malware, and Vulnerability Assessment: 19th International Conference, DIMVA 2022, Cagliari, Italy, June 29 –July 1, 2022, Proceedings , 2022, International Conference on Detection of intrusions and malware, and vulnerability assessment.

[28]  Salvatore J. Stolfo,et al.  Anomalous Payload-Based Network Intrusion Detection , 2004, RAID.

[29]  Yves Grandvalet,et al.  Y.: SimpleMKL , 2008 .

[30]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[31]  Mark Crovella,et al.  Distributed Spatial Anomaly Detection , 2008, IEEE INFOCOM 2008 - The 27th Conference on Computer Communications.

[32]  Eleazar Eskin,et al.  The Spectrum Kernel: A String Kernel for SVM Protein Classification , 2001, Pacific Symposium on Biocomputing.

[33]  Philip K. Chan,et al.  Learning rules for anomaly detection of hostile network traffic , 2003, Third IEEE International Conference on Data Mining.

[34]  Koen E. A. van de Sande,et al.  Evaluation of color descriptors for object and scene recognition , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[35]  Andrew McCallum,et al.  Dynamic conditional random fields: factorized probabilistic models for labeling and segmenting sequence data , 2004, J. Mach. Learn. Res..