Fabrication of CuCo2S4 on composite interface materials made of polypyrrole and nitrogen-doped carbon nanotubes for use in supercapacitors

[1]  Xiaodong Lei,et al.  Construction of vacancies-enriched CuS/Fe2O3 with nano-heterojunctions as negative electrode for flexible solid-state supercapacitor , 2022, Journal of Alloys and Compounds.

[2]  Hyun‐Seok Kim,et al.  Fabrication of NiCo2S4 accumulated on metal organic framework nanostructured with multiwalled carbon nanotubes composite material for supercapacitor application , 2022, Ceramics International.

[3]  Visweswara Rao Pasupuleti,et al.  Sonication-supported synthesis of cobalt oxide assembled on an N-MWCNT composite for electrochemical supercapacitors via three-electrode configuration , 2022, Scientific Reports.

[4]  Hyun‐Seok Kim,et al.  Sheet-like morphology CuCo2O4 bimetallic nanoparticles adorned on graphene oxide composites for symmetrical energy storage applications , 2022, Journal of Alloys and Compounds.

[5]  Shobha,et al.  Improved electrochemical performance of nickel cobaltite/ multi-walled carbon nanotube composite as a hybrid electrode for supercapacitors , 2021, Journal of Physics and Chemistry of Solids.

[6]  A. Ehsani,et al.  Lignin-derived carbon as a high efficient active material for enhancing pseudocapacitance performance of p-type conductive polymer , 2021 .

[7]  Shiping Luo,et al.  CuMn2O4 spinel anchored on graphene nanosheets as a novel electrode material for supercapacitor , 2021 .

[8]  K. Zeb,et al.  Highly efficient copper-cobalt sulfide nano-reeds array with simplistic fabrication strategy for battery-type supercapacitors , 2020 .

[9]  A. Heidari,et al.  Influence of synthesized functionalized reduced graphene oxide aerogel with 4,4′-methylenedianiline as reducing agent on electrochemical and pseudocapacitance performance of poly orthoaminophenol electroactive film , 2020 .

[10]  Jong-Hyeok Choi,et al.  Nanosheet-like ZnCo2O4@nitrogen doped graphene oxide/polyaniline composite for supercapacitor application: Effect of polyaniline incorporation , 2020 .

[11]  A. Kadam,et al.  Designing of nanoflakes anchored nanotubes-like MnCo2S4/halloysite composites for advanced battery like supercapacitor application , 2020 .

[12]  R. Alizadeh,et al.  Ternary nanocomposite of conductive polymer/chitosan biopolymer/metal organic framework: Synthesis, characterization and electrochemical performance as effective electrode materials in pseudocapacitors , 2020 .

[13]  Yan Zhang,et al.  Enhanced electrochemical performance of three-dimensional graphene/carbon nanotube composite for supercapacitor application , 2020 .

[14]  Y. Su,et al.  Ultra-small amorphous MoS2 decorated reduced graphene oxide for supercapacitor application , 2020 .

[15]  C. Lokhande,et al.  Binder free lanthanum doped manganese oxide @ graphene oxide composite as high energy density electrode material for flexible symmetric solid state supercapacitor , 2020 .

[16]  J. Jyothibasu,et al.  Green synthesis of polypyrrole tubes using curcumin template for excellent electrochemical performance in supercapacitors , 2020 .

[17]  F. Ran,et al.  Quantum dots of molybdenum nitride embedded in continuously distributed polyaniline as novel electrode material for supercapacitor , 2020 .

[18]  Hamidreza Parsimehr,et al.  Environment‐friendly electrodes using biopolymer chitosan/poly ortho aminophenol with enhanced electrochemical behavior for use in energy storage devices , 2019, Polymer Composites.

[19]  G. Paruthimal Kalaignan,et al.  Fabrication of core-shell like hybrids of CuCo2S4@NiCo(OH)2 nanosheets for supercapacitor applications , 2019, Composites Part B: Engineering.

[20]  Weihua Liu,et al.  Reduced graphene oxide/CoS2 porous nanoparticle hybrid electrode material for supercapacitor application , 2019, RSC advances.

[21]  Y. Fu,et al.  Enhanced electrochemical performance of CuCo2S4/carbon nanotubes composite as electrode material for supercapacitors. , 2019, Journal of colloid and interface science.

[22]  Hyun‐Seok Kim,et al.  Nanostructured CuO/Co2O4@ nitrogen doped MWCNT hybrid composite electrode for high-performance supercapacitors , 2019, Composites Part B: Engineering.

[23]  J. Jyothibasu,et al.  Flexible and freestanding electrodes based on polypyrrole/carbon nanotube/cellulose composites for supercapacitor application , 2019, Cellulose.

[24]  G. Fang,et al.  A 3D self-supported coralline-like CuCo2S4@NiCo2S4 core–shell nanostructure composite for high-performance solid-state asymmetrical supercapacitors , 2019, Nanotechnology.

[25]  N. Kim,et al.  Metal–organic framework derived hierarchical copper cobalt sulfide nanosheet arrays for high-performance solid-state asymmetric supercapacitors , 2019, Journal of Materials Chemistry A.

[26]  Xiaomin Wang,et al.  High rate capability electrode constructed by anchoring CuCo2S4 on graphene aerogel skeleton toward quasi-solid-state supercapacitor , 2019, Electrochimica Acta.

[27]  Mahnaz M. Abdi,et al.  Nanoporous CuCo2S4 Microspheres: A Novel Positive Electrode for High-Performance Hybrid Energy Storage Devices , 2018, ACS Applied Energy Materials.

[28]  Jihuai Wu,et al.  Synthesis of CuCo2S4 nanosheet arrays on Ni foam as binder-free electrode for asymmetric supercapacitor , 2018, International Journal of Hydrogen Energy.

[29]  Liangyu Gong,et al.  Self-Supporting CuCo2 S4 Microspheres for High-Performance Flexible Asymmetric Solid-State Supercapacitors , 2018, European Journal of Inorganic Chemistry.

[30]  P. Ajayan,et al.  Mesostructured CuCo2S4/CuCo2O4 nanoflowers as advanced electrodes for asymmetric supercapacitors , 2018, Journal of Power Sources.

[31]  D. Hui,et al.  Synergistic effect of reduced graphene oxide, CNT and metal oxides on cellulose matrix for supercapacitor applications , 2018 .

[32]  Yinzhu Jiang,et al.  Bubble-supported engineering of hierarchical CuCo2S4 hollow spheres for enhanced electrochemical performance , 2018 .

[33]  W. Fei,et al.  Hierarchical CuCo2S4@NiMn-layered double hydroxide core-shell hybrid arrays as electrodes for supercapacitors , 2018 .

[34]  Gao Yanmin,et al.  A novel CuCo2S4/polyacrylonitrile ink for flexible film supercapacitors , 2018 .

[35]  M. Khil,et al.  Mesoporous 3D NiCo2O4/MWCNT nanocomposite aerogels prepared by a supercritical CO2 drying method for high performance hybrid supercapacitor electrodes , 2018 .

[36]  C. Li,et al.  Hierarchical design of Cu1−xNixS nanosheets for high-performance asymmetric solid-state supercapacitors , 2017 .

[37]  W. Zhou,et al.  Controllable preparation of highly uniform CuCo2S4 materials as battery electrode for energy storage with enhanced electrochemical performances , 2017 .

[38]  T. Shi,et al.  Construction of porous CuCo2S4 nanorod arrays via anion exchange for high-performance asymmetric supercapacitor , 2017, Scientific Reports.

[39]  Yan Yu,et al.  N,S co-doped 3D mesoporous carbon–Co3Si2O5(OH)4 architectures for high-performance flexible pseudo-solid-state supercapacitors , 2017 .

[40]  C. Rout,et al.  Facile electrochemical growth of spinel copper cobaltite nanosheets for non-enzymatic glucose sensing and supercapacitor applications , 2017 .

[41]  Xing Hu,et al.  Facile fabrication of flower-like CuCo2S4 on Ni foam for supercapacitor application , 2017, Journal of Materials Science.

[42]  S. Ramesh,et al.  Binary composite of polyaniline/copper cobaltite for high performance asymmetric supercapacitor application , 2017 .

[43]  H. Che,et al.  Hierarchical dandelion-like copper oxide wrapped by reduced graphene oxide: Hydrothermal synthesis and their application in supercapacitors , 2016 .

[44]  N. Kim,et al.  Facile fabrication of Co2CuS4 nanoparticle anchored N-doped graphene for high-performance asymmetric supercapacitors , 2016 .

[45]  Xiaobo Ji,et al.  The investigation of the electrochemically supercapacitive performances of mesoporous CuCo2S4 , 2016 .

[46]  Hong Hu,et al.  High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn , 2016 .

[47]  K. Kar,et al.  Ultra-flexible fibrous supercapacitors with carbon nanotube/polypyrrole brush-like electrodes , 2016 .

[48]  Minshen Zhu,et al.  Nanostructured Polypyrrole as a flexible electrode material of supercapacitor , 2016 .

[49]  S. E. Moosavifard,et al.  Hierarchical CuCo2S4 hollow nanoneedle arrays as novel binder-free electrodes for high-performance asymmetric supercapacitors. , 2016, Chemical communications.

[50]  Zhuqing Zhang,et al.  Construction of three-dimensional CuCo2S4/CNT/graphene nanocomposite for high performance supercapacitors , 2016 .

[51]  R. Selvan,et al.  Improved electrochemical performances of CuCo2O4/CuO nanocomposites for asymmetric supercapacitors , 2016 .

[52]  Biao Wang,et al.  Ethanol-assisted solvothermal synthesis of porous nanostructured cobalt oxides (CoO/Co3O4) for high-performance supercapacitors , 2015 .

[53]  K. Ryu,et al.  Hierarchical CuCo2O4 nanobelts as a supercapacitor electrode with high areal and specific capacitance , 2015 .

[54]  Youlong Xu,et al.  The effect of various electrolyte cations on electrochemical performance of polypyrrole/RGO based supercapacitors. , 2015, Physical chemistry chemical physics : PCCP.

[55]  Li Ruiyi,et al.  Three-dimensional electrode of Ni/Co layered double hydroxides@NiCo2S4@graphene@Ni foam for supercapacitors with outstanding electrochemical performance , 2015 .

[56]  Zheng Lou,et al.  CuCo2O4 Nanowires Grown on a Ni Wire for High‐Performance, Flexible Fiber Supercapacitors , 2015 .

[57]  Afshin Pendashteh,et al.  Highly Ordered Mesoporous CuCo2O4 Nanowires, a Promising Solution for High-Performance Supercapacitors , 2015 .

[58]  Yang Lu,et al.  Mesoporous CuCo2O4 nanograsses as multi-functional electrodes for supercapacitors and electro-catalysts , 2015 .

[59]  Maher F El-Kady,et al.  Designing 3D highly ordered nanoporous CuO electrodes for high-performance asymmetric supercapacitors. , 2015, ACS applied materials & interfaces.

[60]  Woo Y. Lee,et al.  Inkjet-Printed Flexible Graphene-Based Supercapacitor , 2014 .

[61]  Jinjun Zhang,et al.  Electrochemical Supercapacitors for Energy Storage and Conversion , 2014 .

[62]  Wei Hu,et al.  CoNi(2)S(4) nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications. , 2014, ACS applied materials & interfaces.

[63]  Jihuai Wu,et al.  Asymmetric supercapacitor based on graphene oxide/polypyrrole composite and activated carbon electrodes , 2014 .

[64]  Li-Jun Wan,et al.  Hydrothermal reduction of three-dimensional graphene oxide for binder-free flexible supercapacitors , 2014 .

[65]  H. Feng,et al.  Polypyrrole/hexadecylpyridinium chloride-modified graphite oxide composites: Fabrication, characterization, and application in supercapacitors , 2014 .

[66]  Zhiyi Lu,et al.  Ultrathin Co3O4 nanosheet arrays with high supercapacitive performance , 2013, Scientific Reports.

[67]  Lin Xu,et al.  Synthesis of graphene oxide based CuO nanoparticles composite electrode for highly enhanced nonenzymatic glucose detection. , 2013, ACS applied materials & interfaces.

[68]  Abdullah M. Asiri,et al.  Spinel CuCo2O4 nanoparticles supported on N-doped reduced graphene oxide: a highly active and stable hybrid electrocatalyst for the oxygen reduction reaction. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[69]  Yu‐Guo Guo,et al.  Carbon‐Nanotube‐Decorated Nano‐LiFePO4 @C Cathode Material with Superior High‐Rate and Low‐Temperature Performances for Lithium‐Ion Batteries , 2013 .

[70]  Zhiyang Zhang,et al.  Indirect transformation of coordination-polymer particles into magnetic carbon-coated MN3O4 (MN3O4@C) nanowires for supercapacitor electrodes with good cycling performance. , 2013, Chemistry.

[71]  Shuhong Yu,et al.  Flexible graphene–polyaniline composite paper for high-performance supercapacitor , 2013 .

[72]  Y. Tsai,et al.  Electrochemically synthesized graphene/polypyrrole composites and their use in supercapacitor , 2012 .

[73]  Lei Zhang,et al.  A review of electrode materials for electrochemical supercapacitors. , 2012, Chemical Society reviews.

[74]  Youngkwan Lee,et al.  Fabrication of polypyrrole (PPy)/carbon nanotube (CNT) composite electrode on ceramic fabric for supercapacitor applications , 2011 .

[75]  Liaochuan Jiang,et al.  A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. , 2010, Biosensors & bioelectronics.

[76]  Xujie Yang,et al.  Graphene oxide doped polyaniline for supercapacitors , 2009 .

[77]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[78]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[79]  B. Liu,et al.  Construction of desirable NiCo2S4 nanotube arrays on nickel foam substrate for pseudocapacitors with enhanced performance , 2015 .

[80]  K. Artyushkova,et al.  CuCo2O4 ORR/OER Bi-Functional Catalyst: Influence of Synthetic Approach on Performance , 2015 .

[81]  S. Bose,et al.  Carbon-based nanostructured materials and their composites as supercapacitor electrodes , 2012 .