On the iterative convergence of harmony search algorithm and a proposed modification

Inspired by the improvisation process of music players, a population-based meta-heuristic algorithm-harmony search (HS) has been proposed recently. HS is good at exploitation, but it can be poor at exploration, and its convergence performance can also be an issue in some cases. To address these disadvantages, the distance bandwidth (bw) adjusting methods proposed in recent literatures are summarized and the exploration ability of HS improvisation is investigated in this paper. Further, the relationship between improvisation exploration and each parameter under asymmetric interval is derived, and an iterative convergence sufficiency of the iteration equation which consists of variance expectation and mean expectation is proven theoretically. Based on these analyses, a modified harmony search (MHS) algorithm is proposed. Moreover, the effects of the key parameters including HMS, PAR and HMCR on the performance of the MHS algorithm are discussed in depth. Experimental results reveal that the proposed MHS algorithm performs better than HS as well as its state-of-the-art variants and other classic excellent meta-heuristic approaches.

[1]  João Paulo Papa,et al.  A novel algorithm for feature selection using Harmony Search and its application for non-technical losses detection , 2011, Comput. Electr. Eng..

[2]  Wing-Keung Wong,et al.  A hybrid intelligent model for medium-term sales forecasting in fashion retail supply chains using extreme learning machine and harmony search algorithm , 2010 .

[3]  Bilal Alatas,et al.  Chaotic bee colony algorithms for global numerical optimization , 2010, Expert Syst. Appl..

[4]  Saman K. Halgamuge,et al.  Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients , 2004, IEEE Transactions on Evolutionary Computation.

[5]  Dinesh Kumar,et al.  Parameter adaptive harmony search algorithm for unimodal and multimodal optimization problems , 2014, J. Comput. Sci..

[6]  Amitava Chatterjee,et al.  Design of a Hybrid Stable Adaptive Fuzzy Controller Employing Lyapunov Theory and Harmony Search Algorithm , 2010, IEEE Transactions on Control Systems Technology.

[7]  Karim Salahshoor,et al.  Global Dynamic Harmony Search algorithm: GDHS , 2014, Appl. Math. Comput..

[8]  Hong Zhou,et al.  Hybridization of harmony search with variable neighborhood search for restrictive single-machine earliness/tardiness problem , 2013, Inf. Sci..

[9]  Mehmet Fatih Tasgetiren,et al.  Dynamic multi-swarm particle swarm optimizer with harmony search , 2011, Expert Syst. Appl..

[10]  Michael Sipser,et al.  Introduction to the Theory of Computation , 1996, SIGA.

[11]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[12]  Hamid R. Tizhoosh,et al.  Applying Opposition-Based Ideas to the Ant Colony System , 2007, 2007 IEEE Swarm Intelligence Symposium.

[13]  Bijaya K. Panigrahi,et al.  Exploratory Power of the Harmony Search Algorithm: Analysis and Improvements for Global Numerical Optimization , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[14]  Carlos Alberto Cobos Lozada,et al.  GHS + LEM: Global-best Harmony Search using learnable evolution models , 2011, Appl. Math. Comput..

[15]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[16]  Siamak Talatahari,et al.  Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures , 2009 .

[17]  Yin-Fu Huang,et al.  Self-adaptive harmony search algorithm for optimization , 2010, Expert Syst. Appl..

[18]  M. Fesanghary,et al.  An improved harmony search algorithm for solving optimization problems , 2007, Appl. Math. Comput..

[19]  M. Tamer Ayvaz,et al.  Application of Harmony Search algorithm to the solution of groundwater management models , 2009 .

[20]  Imtiaz Ahmad,et al.  Broadcast scheduling in packet radio networks using Harmony Search algorithm , 2012, Expert Syst. Appl..

[21]  Sanyang Liu,et al.  Improved artificial bee colony algorithm for global optimization , 2011 .

[22]  Jianhua Wu,et al.  Novel global harmony search algorithm for unconstrained problems , 2010, Neurocomputing.

[23]  Michael Sipser,et al.  Introduction to the Theory of Computation: Preliminary Edition , 1996 .

[24]  R. Arul,et al.  Chaotic self-adaptive differential harmony search algorithm based dynamic economic dispatch , 2013 .

[25]  Bilal Alatas,et al.  Chaotic harmony search algorithms , 2010, Appl. Math. Comput..

[26]  Jun Zhang,et al.  Adaptive Particle Swarm Optimization , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[27]  Kwee-Bo Sim,et al.  Parameter-setting-free harmony search algorithm , 2010, Appl. Math. Comput..

[28]  A. Kai Qin,et al.  Self-adaptive differential evolution algorithm for numerical optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.

[29]  Jing J. Liang,et al.  A self-adaptive global best harmony search algorithm for continuous optimization problems , 2010, Appl. Math. Comput..

[30]  K. S. Swarup,et al.  Environmental/economic dispatch using multi-objective harmony search algorithm , 2011 .

[31]  Liang Gao,et al.  A chaotic harmony search algorithm for the flow shop scheduling problem with limited buffers , 2011, Appl. Soft Comput..

[32]  Quan-Ke Pan,et al.  Harmony search algorithm with dynamic control parameters , 2012, Appl. Math. Comput..

[33]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[34]  A. E. Eiben,et al.  On Evolutionary Exploration and Exploitation , 1998, Fundam. Informaticae.

[35]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[36]  Abdul Hanan Abdullah,et al.  LAHS: A novel harmony search algorithm based on learning automata , 2013, Commun. Nonlinear Sci. Numer. Simul..

[37]  Salwani Abdullah,et al.  A multi-population harmony search algorithm with external archive for dynamic optimization problems , 2014, Inf. Sci..

[38]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[39]  Bijaya K. Panigrahi,et al.  Dynamic economic load dispatch using hybrid swarm intelligence based harmony search algorithm , 2011, Expert Syst. Appl..

[40]  N. Poursalehi,et al.  Differential harmony search algorithm to optimize PWRs loading pattern , 2013 .

[41]  Zou De-xuan Adaptive harmony PSO search algorithm , 2010 .

[42]  Sam Kwong,et al.  Gbest-guided artificial bee colony algorithm for numerical function optimization , 2010, Appl. Math. Comput..

[43]  Jianhua Wu,et al.  An effective global harmony search algorithm for reliability problems , 2011, Expert Syst. Appl..

[44]  Yang Hua Group Search Optimizer Applying Opposition-based Learning , 2012 .

[45]  Mahamed G. H. Omran,et al.  Global-best harmony search , 2008, Appl. Math. Comput..

[46]  Junjie Li,et al.  Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions , 2011, Inf. Sci..

[47]  Arthur C. Sanderson,et al.  JADE: Adaptive Differential Evolution With Optional External Archive , 2009, IEEE Transactions on Evolutionary Computation.

[48]  M. Jaberipour,et al.  Two improved harmony search algorithms for solving engineering optimization problems , 2010 .

[49]  Mohammed Azmi Al-Betar,et al.  University Course Timetabling Using a Hybrid Harmony Search Metaheuristic Algorithm , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[50]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[51]  Hui Wang,et al.  Opposition-based particle swarm algorithm with cauchy mutation , 2007, 2007 IEEE Congress on Evolutionary Computation.

[52]  Hamid R. Tizhoosh,et al.  Opposition-Based Learning: A New Scheme for Machine Intelligence , 2005, International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06).

[53]  Zou De-xuan A Global Particle Swarm Optimization Algorithm , 2011 .

[54]  Ali Kattan,et al.  A dynamic self-adaptive harmony search algorithm for continuous optimization problems , 2013, Appl. Math. Comput..

[55]  Rajesh Kumar,et al.  An Intelligent Tuned Harmony Search algorithm for optimisation , 2012, Inf. Sci..

[56]  M.M.A. Salama,et al.  Opposition-Based Differential Evolution , 2008, IEEE Transactions on Evolutionary Computation.