Information Retrieval Meets Game Theory: The Ranking Competition Between Documents' Authors
暂无分享,去创建一个
Moshe Tennenholtz | Oren Kurland | Fiana Raiber | Nimrod Raifer | Moshe Tennenholtz | Oren Kurland | Fiana Raiber | Nimrod Raifer
[1] Tao Tao,et al. A formal study of information retrieval heuristics , 2004, SIGIR '04.
[2] Ran Ben-Basat,et al. The ranking game , 2016, WebDB.
[3] Kfir Eliaz,et al. Search Design and Broad Matching , 2016 .
[4] S. Robertson. The probability ranking principle in IR , 1997 .
[5] Charles L. A. Clarke,et al. Efficient and effective spam filtering and re-ranking for large web datasets , 2010, Information Retrieval.
[6] Juliana Freire,et al. A First Study on Temporal Dynamics of Topics on the Web , 2016, WWW.
[7] Qiang Wu,et al. Adapting boosting for information retrieval measures , 2010, Information Retrieval.
[8] Norbert Fuhr,et al. A probability ranking principle for interactive information retrieval , 2008, Information Retrieval.
[9] Marc Najork,et al. Detecting spam web pages through content analysis , 2006, WWW '06.
[10] Jérôme Renault,et al. Repeated Games with Incomplete Information , 2009, Encyclopedia of Complexity and Systems Science.
[11] Moshe Tennenholtz,et al. The Probability Ranking Principle is Not Optimal in Adversarial Retrieval Settings , 2015, ICTIR.
[12] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[13] Brian D. Davison,et al. Adversarial Web Search , 2011, Found. Trends Inf. Retr..
[14] C. J. van Rijsbergen,et al. The use of hierarchic clustering in information retrieval , 1971, Inf. Storage Retr..
[15] Jun Wang,et al. Dynamical information retrieval modelling: a portfolio-armed bandit machine approach , 2012, WWW.
[16] Hector Garcia-Molina,et al. Web Spam Taxonomy , 2005, AIRWeb.
[17] Jun Wang,et al. Dynamic Information Retrieval Modeling , 2015, Synthesis Lectures on Information Concepts, Retrieval, and Services.
[18] Jade Goldstein-Stewart,et al. The Use of MMR, Diversity-Based Reranking for Reordering Documents and Producing Summaries , 1998, SIGIR Forum.
[19] Hong Wang,et al. Adversarial Prediction Games for Multivariate Losses , 2015, NIPS.
[20] W. Bruce Croft,et al. Quality-biased ranking of web documents , 2011, WSDM '11.
[21] Tie-Yan Liu. Learning to Rank for Information Retrieval , 2009, Found. Trends Inf. Retr..
[22] Craig Boutilier,et al. Regret Minimizing Equilibria and Mechanisms for Games with Strict Type Uncertainty , 2004, UAI.
[23] Fernando Diaz,et al. Regularizing ad hoc retrieval scores , 2005, CIKM '05.
[24] Susan T. Dumais,et al. Leveraging temporal dynamics of document content in relevance ranking , 2010, WSDM '10.
[25] Jade Goldstein-Stewart,et al. The use of MMR, diversity-based reranking for reordering documents and producing summaries , 1998, SIGIR '98.
[26] John D. Lafferty,et al. Document Language Models, Query Models, and Risk Minimization for Information Retrieval , 2001, SIGIR Forum.
[27] Ran El-Yaniv,et al. On the Foundations of Adversarial Single-Class Classification , 2010, ArXiv.
[28] Pedro M. Domingos,et al. Adversarial classification , 2004, KDD.
[29] Yinan Zhang,et al. Information Retrieval as Card Playing: A Formal Model for Optimizing Interactive Retrieval Interface , 2015, SIGIR.
[30] R. Spiegler,et al. A Simple Model of Search Engine Pricing , 2011 .
[31] Paul N. Bennett,et al. Predicting content change on the web , 2013, WSDM.