The petrogenetic relationship between migmatite and granite in the Himalayan orogen: Petrological and geochemical constraints

[1]  Yong‐Fei Zheng,et al.  Geochemical evidence for partial melting of progressively varied crustal sources for leucogranites during the Oligocene–Miocene in the Himalayan orogen , 2021, Chemical Geology.

[2]  Yong‐Fei Zheng,et al.  Extreme metamorphism and metamorphic facies series at convergent plate boundaries: Implications for supercontinent dynamics , 2021, Geosphere.

[3]  R. Strachan,et al.  The metamorphic and magmatic record of collisional orogens , 2021, Nature Reviews Earth & Environment.

[4]  P. Fiannacca,et al.  Crustal melting vs. fractionation of basaltic magmas: Part 1, The bipolar disorder of granite petrogenetic models , 2021 .

[5]  O. Bartoli Granite geochemistry is not diagnostic of the role of water in the source , 2021, Earth and Planetary Science Letters.

[6]  Yong‐Fei Zheng,et al.  The production of granitic magmas through crustal anatexis at convergent plate boundaries , 2021 .

[7]  Yong‐Fei Zheng,et al.  Metapelites record two episodes of decompressional metamorphism in the Himalayan orogen , 2021 .

[8]  Fu-Yuan Wu,et al.  First evidence of eclogites overprinted by ultrahigh temperature metamorphism in Everest East, Himalaya: Implications for collisional tectonics on early Earth , 2021 .

[9]  Yong‐Fei Zheng,et al.  Fluid-present and fluid-absent melting of muscovite in migmatites in the Himalayan orogen: Constraints from major and trace element zoning and phase equilibrium relationships , 2021 .

[10]  Lei Xie,et al.  Highly fractionated Himalayan leucogranites and associated rare-metal mineralization , 2020 .

[11]  M. Searle,et al.  Muscovite dehydration melting: Reaction mechanisms, microstructures, and implications for anatexis , 2019, Journal of Metamorphic Geology.

[12]  Fu-Yuan Wu,et al.  Is Himalayan leucogranite a product by in situ partial melting of the Greater Himalayan Crystalline? A comparative study of leucosome and leucogranite from Nyalam, southern Tibet , 2019, Lithos.

[13]  Fu-Yuan Wu,et al.  Mineralogical evidence for fractionation processes in the Himalayan leucogranites of the Ramba Dome, southern Tibet , 2019, Lithos.

[14]  M. Searle,et al.  Introduction to Himalayan tectonics: a modern synthesis , 2019, Special Publications.

[15]  K. Hou,et al.  Early Paleozoic magmatism along the northern margin of East Gondwana , 2019, Lithos.

[16]  P. O'Brien Eclogites and other high-pressure rocks in the Himalaya: a review , 2018, Special Publications.

[17]  Yong‐Fei Zheng,et al.  The timing of continental collision between India and Asia. , 2018, Science bulletin.

[18]  R. Weinberg,et al.  How Melt Segregation Affects Granite Chemistry: Migmatites from the Sierra de Quilmes, NW Argentina , 2017 .

[19]  Yong‐Fei Zheng,et al.  Regional metamorphism at extreme conditions: Implications for orogeny at convergent plate margins , 2017 .

[20]  M. Engi Petrochronology Based on REE-Minerals: Monazite, Allanite, Xenotime, Apatite , 2017 .

[21]  R. Parrish,et al.  The identification and significance of pure sediment-derived granites , 2017 .

[22]  Zhidan Zhao,et al.  Constraining quantitatively the timing and process of continent-continent collision using magmatic record: Method and examples , 2017, Science China Earth Sciences.

[23]  G. Stevens,et al.  Phase equilibrium modelling of granite magma petrogenesis: A. An evaluation of the magma compositions produced by crystal entrainment in the source , 2017 .

[24]  G. Stevens,et al.  Phase equilibrium modelling of granite magma petrogenesis: B. An evaluation of the magma compositions that result from fractional crystallization , 2017 .

[25]  Wei Wang,et al.  Neoproterozoic magmatism in eastern Himalayan terrane. , 2017, Science bulletin.

[26]  Paul D. Asimow,et al.  Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources: The Himalayan leucogranites , 2017 .

[27]  R. Weinberg Himalayan leucogranites and migmatites: nature, timing and duration of anatexis , 2016 .

[28]  R. Powell,et al.  Phase equilibria constraints on the melt fertility of crustal rocks: the effect of subsolidus water loss , 2015 .

[29]  R. Weinberg,et al.  Water-fluxed melting of the continental crust: A review , 2015 .

[30]  Zhenyu He,et al.  Long-lived high-temperature granulite-facies metamorphism in the Eastern Himalayan orogen, south Tibet , 2015 .

[31]  M. Kohn Himalayan Metamorphism and Its Tectonic Implications , 2014 .

[32]  L. Zeng,et al.  Fluxed melting of metapelite and the formation of Miocene high-CaO two-mica granites in the Malashan gneiss dome, southern Tibet , 2014 .

[33]  N. Roberts,et al.  Tectono-metamorphic evolution of the Jomolhari massif: variations in timing of syn-collisional metamorphism across western Bhutan , 2014 .

[34]  R. Rudnick,et al.  Composition of the Continental Crust , 2014 .

[35]  A. Glazner,et al.  Late crystallization of K-feldspar and the paradox of megacrystic granites , 2013, Contributions to Mineralogy and Petrology.

[36]  A. Pêcher,et al.  Orogen‐parallel ductile extension and extrusion of the Greater Himalaya in the late Oligocene and Miocene , 2013 .

[37]  S. Chakraborty,et al.  Timescales of crustal melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) inferred from trace element-constrained monazite and zircon chronology , 2013, Contributions to Mineralogy and Petrology.

[38]  M. Brown,et al.  Granite: From genesis to emplacement , 2012 .

[39]  T. Harrison,et al.  The origin of Eo- and Neo-himalayan granitoids, Eastern Tibet , 2012 .

[40]  Bo Zhang,et al.  Tectonics of the northern Himalaya since the India–Asia collision , 2012 .

[41]  A. Stepanov,et al.  Experimental study of monazite/melt partitioning with implications for the REE, Th and U geochemistry of crustal rocks , 2012 .

[42]  A. Castro,et al.  Trace element behavior during partial melting of Iberian orthogneisses: An experimental study , 2012 .

[43]  G. Gehrels,et al.  Detrital zircon geochronology of pre‐Tertiary strata in the Tibetan‐Himalayan orogen , 2011 .

[44]  M. Brown,et al.  When the Continental Crust Melts , 2011 .

[45]  L. Zeng,et al.  Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes: Melting thickened lower continental crust , 2011 .

[46]  R. Parrish,et al.  Contribution of crustal anatexis to the tectonic evolution of Indian crust beneath southern Tibet , 2011 .

[47]  F. Spear Monazite–allanite phase relations in metapelites , 2010 .

[48]  M. Searle,et al.  Metamorphism, melting, and channel flow in the Greater Himalayan Sequence and Makalu leucogranite: Constraints from thermobarometry, metamorphic modeling, and U‐Pb geochronology , 2010 .

[49]  T. Takeshita,et al.  Metamorphic P–T profile and P–T path discontinuity across the far‐eastern Nepal Himalaya: investigation of channel flow models , 2010 .

[50]  O. Vanderhaeghe Migmatites, granites and orogeny: Flow modes of partially-molten rocks and magmas associated with melt/solid segregation in orogenic belts , 2009 .

[51]  E. Watson,et al.  New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers , 2007 .

[52]  A. Glazner Thermal limitations on incorporation of wall rock into magma , 2007 .

[53]  Peter A. Cawood,et al.  Early Palaeozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana assembly , 2007 .

[54]  F. Brunet,et al.  Thermochemistry of monazite-(La) and dissakisite-(La): implications for monazite and allanite stability in metapelites , 2007 .

[55]  J. Moyen,et al.  Selective peritectic garnet entrainment as the origin of geochemical diversity in S-type granites , 2007 .

[56]  R. Parrish,et al.  Correlation of lithotectonic units across the eastern Himalaya, Bhutan , 2006 .

[57]  An Yin,et al.  Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation , 2006 .

[58]  P. Jutras,et al.  Evidence for the granulite–granite connection: Penecontemporaneous high-grade metamorphism, granitic magmatism and core complex development in the Liscomb Complex, Nova Scotia, Canada , 2006 .

[59]  P. Asimow,et al.  Coupling of anatectic reactions and dissolution of accessory phases and the Sr and Nd isotope systematics of anatectic melts from a metasedimentary source , 2005 .

[60]  P. Asimow,et al.  Nd isotope disequilibrium during crustal anatexis: A record from the Goat Ranch migmatite complex, southern Sierra Nevada batholith, California , 2005 .

[61]  E. Watson,et al.  Pb diffusion in monazite: a combined RBS/SIMS study , 2004 .

[62]  G. Droop,et al.  Evidence for a genetic granite–migmatite link in the Dalradian of NE Scotland , 2003, Journal of the Geological Society.

[63]  A. Berger,et al.  Preservation of chemical residue-melt equilibria in natural anatexite: the effects of deformation and rapid cooling , 2003 .

[64]  E. Sawyer Melt segregation in the continental crust: distribution and movement of melt in anatectic rocks , 2001 .

[65]  G. Solar,et al.  Petrogenesis of Migmatites in Maine, USA: Possible Source of Peraluminous Leucogranite in Plutons? , 2001 .

[66]  W. Collins,et al.  Migmatite-Granite Relationships: Origin of the Cooma Granodiorite Magma, Lachlan Fold Belt, Australia , 2001 .

[67]  N. Harris,et al.  Fluid-enhanced melting during prograde metamorphism , 2001, Journal of the Geological Society.

[68]  J. Bunbury,et al.  Isotopic constraints on the structural relationships between the Lesser Himalayan Series and the High Himalayan Crystalline Series, Garhwal Himalaya , 2000 .

[69]  K. Hodges Tectonics of the Himalaya and southern Tibet from two perspectives , 2000 .

[70]  E. Sawyer Formation and Evolution of Granite Magmas During Crustal Reworking: the Significance of Diatexites , 1998 .

[71]  N. Harris,et al.  Experimental Constraints on Himalayan Anatexis , 1998 .

[72]  N. Harris,et al.  REE fractionation and Nd-isotope disequilibrium during crustal anatexis: constraints from Himalayan leucogranites , 1997 .

[73]  P. Barbey,et al.  Granite-migmatite genetic link: the example of the Manaslu granite and Tibetan Slab migmatites in central Nepal , 1996 .

[74]  W. McDonough,et al.  The composition of the Earth , 1995 .

[75]  J. Ferry Role of fluid flow in the contact metamorphism of siliceous dolomitic limestones-Reply to Hanson , 1995 .

[76]  J. Montel A model for monazite/ melt equilibrium and application to the generation of granitic magmas , 1993 .

[77]  N. Harris,et al.  Geochemical Constraints on Leucogranite Magmatism in the Langtang Valley, Nepal Himalaya , 1993 .

[78]  F. Bea,et al.  The geochemistry of phosphorus in granite rocks and the effect of aluminium , 1992 .

[79]  M. Pichavant,et al.  Apatite solubility in peraluminous liquids: Experimental data and an extension of the Harrison-Watson model , 1992 .

[80]  N. Harris,et al.  Trace element modelling of pelite-derived granites , 1992 .

[81]  B. Chappell,et al.  Per migma ad magma downunder , 1990 .

[82]  C. Pin,et al.  Granites, Granulites, and Crustal Differentiation , 1990 .

[83]  J. Clemens The Granulite — Granite Connexion , 1990 .

[84]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[85]  T. Druitt,et al.  Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon , 1988 .

[86]  B. N. Upreti,et al.  Crustal generation of the Himalayan leucogranites , 1987 .

[87]  E. Watson,et al.  Monazite solubility and dissolution kinetics: implications for the thorium and light rare earth chemistry of felsic magmas , 1986 .

[88]  H. Crecraft,et al.  Partition coefficients for trace elements in silicic magmas , 1985 .

[89]  E. Watson,et al.  The behavior of apatite during crustal anatexis: Equilibrium and kinetic considerations , 1984 .