Debye Temperature, Electron-Phonon Coupling Constant, and Moderate Nonadiabaticity in Highly-Compressed I-43d-Tah3 Superconductor

Recently He et al (2022 arXiv 2212.13739) reported on the discovery of high-temperature superconductivity in highly-compressed polyhydride of tantalum. At pressure 𝑃 = 197 𝐺𝑃𝑎 , the polyhydride I-43d -phase of TaH 3 exhibits zero-resistance transition temperature 𝑇 𝑐,𝑧𝑒𝑟𝑜 = 25.6 𝐾 . Measurements of the low-temperature magnetoresistance showed that this superconductor has the ground state upper critical field (defined by the zero resistance criterion) 𝐵 𝑐2 (0) = 11 ± 1 𝑇𝑒𝑠𝑙𝑎. Here, we performed detailed analysis of the reported experimental data by He et al (2022 arXiv 2212.13739) and deduced several parameters of the I-43d -phase of TaH 3 : (a) the Debye temperature, 𝑇 𝜃 = 263 𝐾 , (b) the electron-phonon coupling constant, 𝜆 𝑒−𝑝ℎ = 1.53 ± 0.13 ; (c) the Fermi temperature 𝑇 𝐹 = 1324 ± 74 𝐾 ; (d) the strength of nonadiabaticity, 𝑇 𝜃 𝑇 𝐹 = 0.19 ± 0.01 ; (e) and the ratio of 𝑇 𝑐 𝑇 𝐹 = 0.0185 ± 0.010 which implies that I-43d -phase of TaH 3 falls in unconventional superconductors band in the Uemura plot. Deduced parameters indicate that the I-43d -phase of TaH 3 ( P = 197 GPa) can be classified as typical unconventional high-temperature superconductor.

[1]  V. Prakapenka,et al.  Superconductivity Observed in Tantalum Polyhydride at High Pressure , 2022, Chinese Physics Letters.

[2]  E. Talantsev Quantifying Nonadiabaticity in Major Families of Superconductors , 2022, Nanomaterials.

[3]  R. Hennig,et al.  High critical field superconductivity at ambient pressure in MoB2 stabilized in the P6/mmm structure via Nb substitution , 2022, Physical Review B.

[4]  H. Mao Hydrogen and related matter in the pressure dimension , 2022, Matter and Radiation at Extremes.

[5]  E. Talantsev Fermi-Liquid Nonadiabatic Highly Compressed Cesium Iodide Superconductor , 2022, Condensed Matter.

[6]  K. Shimizu,et al.  Giant enhancement of superconducting critical temperature in substitutional alloy (La,Ce)H9 , 2022, Nature Communications.

[7]  E. Talantsev The Compliance of the Upper Critical Field in Magic-Angle Multilayer Graphene with the Pauli Limit , 2022, Materials.

[8]  T. Cui,et al.  Room-Temperature Superconductivity in Yb/Lu Substituted Clathrate Hexahydrides under Moderate Pressure , 2022, Research.

[9]  R. P. Singh,et al.  Two-dimensional multigap superconductivity in bulk 2HTaSeS , 2022, Physical Review B.

[10]  K. Shimizu,et al.  Effect of Magnetic Impurities on Superconductivity in LaH10 , 2022, Advanced materials.

[11]  E. Talantsev Electron–phonon coupling constant and BCS ratios in LaH10−y doped with magnetic rare-earth element , 2022, Superconductor Science and Technology.

[12]  Yanming Ma,et al.  High-Temperature Superconducting Phase in Clathrate Calcium Hydride CaH_{6} up to 215 K at a Pressure of 172 GPa. , 2022, Physical review letters.

[13]  X. Dong,et al.  Pressure-Induced Superconductivity up to 9 K in the Quasi-One-Dimensional KMn_{6}Bi_{5}. , 2022, Physical review letters.

[14]  Y. Yin,et al.  Possible Superconductivity at ∼70 K in Tin Hydride SnHx under High Pressure , 2021, Materials Today Physics.

[15]  Yanjun Qi,et al.  Pressure induced superconductivity in WB2 and ReB2 through modifying the B layers , 2021, 2111.11909.

[16]  Xiaoli Huang,et al.  High-pressure synthesis of superconducting clathratelike YH4 , 2021, Physical Review B.

[17]  R. Hennig,et al.  Creating superconductivity in WB2 through pressure-induced metastable planar defects , 2021, Nature communications.

[18]  E. R. Margine,et al.  The 2021 room-temperature superconductivity roadmap , 2021, Journal of physics. Condensed matter : an Institute of Physics journal.

[19]  E. Talantsev The electron–phonon coupling constant and the Debye temperature in polyhydrides of thorium, hexadeuteride of yttrium, and metallic hydrogen phase III , 2021, Journal of Applied Physics.

[20]  T. Cui,et al.  Design Principles for High-Temperature Superconductors with a Hydrogen-Based Alloy Backbone at Moderate Pressure. , 2021, Physical review letters.

[21]  Cuiying Pei,et al.  Pressure-induced superconductivity at 32 K in MoB2 , 2021, National science review.

[22]  J. Bass,et al.  Superconductivity above 200 K discovered in superhydrides of calcium , 2021, Nature Communications.

[23]  M. Calandra,et al.  Anomalous High‐Temperature Superconductivity in YH6 , 2021, Advanced materials.

[24]  Xiaoli Huang,et al.  Synthesis of molecular metallic barium superhydride: pseudocubic BaH12 , 2021, Nature communications.

[25]  Xiaoli Huang,et al.  High-Temperature Superconducting Phases in Cerium Superhydride with a T_{c} up to 115 K below a Pressure of 1 Megabar. , 2021, Physical review letters.

[26]  A. Oganov,et al.  Superconductivity at 253 K in lanthanum–yttrium ternary hydrides , 2020, Materials Today.

[27]  E. Talantsev An approach to identifying unconventional superconductivity in highly-compressed superconductors , 2020, Superconductor Science and Technology.

[28]  Yanming Ma,et al.  High-temperature superconductivity on the verge of a structural instability in lanthanum superhydride , 2020, Nature Communications.

[29]  H. Mao,et al.  Everything you always wanted to know about metallic hydrogen but were afraid to ask , 2020 .

[30]  H. Mao,et al.  Superconductivity in La and Y hydrides: Remaining questions to experiment and theory , 2020, Matter and Radiation at Extremes.

[31]  E. Talantsev Advanced McMillan’s equation and its application for the analysis of highly-compressed superconductors , 2020, Superconductor Science and Technology.

[32]  I. Mackinnon,et al.  Progress Towards a Universal Approach for Prediction of the Superconducting Transition Temperature , 2019, Journal of Superconductivity and Novel Magnetism.

[33]  Y. Uemura Dynamic superconductivity responses in photoexcited optical conductivity and Nernst effect , 2019, Physical Review Materials.

[34]  S. Mozaffari,et al.  Superconductivity up to 243 K in yttrium hydrides under high pressure , 2019, 1909.10482.

[35]  F. Belli,et al.  Quantum crystal structure in the 250-kelvin superconducting lanthanum hydride , 2019, Nature.

[36]  E. Talantsev Classifying hydrogen-rich superconductors , 2019, Materials Research Express.

[37]  M. Eremets,et al.  A perspective on conventional high-temperature superconductors at high pressure: Methods and materials , 2019, 1905.06693.

[38]  Xiaoli Huang,et al.  Superconducting praseodymium superhydrides , 2019, Science Advances.

[39]  A. Oganov,et al.  Superconductivity at 161 K in thorium hydride ThH10: Synthesis and properties , 2019, Materials Today.

[40]  E. Talantsev,et al.  Classifying superconductivity in Moiré graphene superlattices , 2019, Scientific Reports.

[41]  E. Talantsev Classifying superconductivity in compressed H3S , 2019, Modern Physics Letters B.

[42]  S. Mozaffari,et al.  Superconducting phase diagram of H3S under high magnetic fields , 2019, Nature Communications.

[43]  Austria,et al.  Superconductivity in sodalite-like yttrium hydride clathrates , 2019, Physical Review B.

[44]  D. Graf,et al.  Superconductivity at 250 K in lanthanum hydride under high pressures , 2018, Nature.

[45]  I. Mackinnon,et al.  Identification of superconductivity mechanisms and prediction of new materials using Density Functional Theory (DFT) calculations , 2018, Journal of Physics: Conference Series.

[46]  A. Kaczmarek,et al.  Phonon-mediated superconductivity in bismuthates by nonadiabatic pairing , 2018, Physical Review B.

[47]  R. Hemley,et al.  Evidence for Superconductivity above 260 K in Lanthanum Superhydride at Megabar Pressures. , 2018, Physical review letters.

[48]  L. Pietronero,et al.  Conventional/unconventional superconductivity in high-pressure hydrides and beyond: insights from theory and perspectives , 2018 .

[49]  A. P. Drozdov,et al.  Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system , 2015, Nature.

[50]  E. Talantsev,et al.  Universal self-field critical current for thin-film superconductors , 2015, Nature Communications.

[51]  Da Li,et al.  Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity , 2014, Scientific Reports.

[52]  Yanming Ma,et al.  The metallization and superconductivity of dense hydrogen sulfide. , 2014, The Journal of chemical physics.

[53]  C. Scheuerlein,et al.  Effects of neutron irradiation on pinning force scaling in state-of-the-art Nb3Sn wires , 2013, 1311.6901.

[54]  Qiang Zhu,et al.  New developments in evolutionary structure prediction algorithm USPEX , 2013, Comput. Phys. Commun..

[55]  Hui Wang,et al.  Superconductive sodalite-like clathrate calcium hydride at high pressures , 2012, Proceedings of the National Academy of Sciences.

[56]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[57]  L. Pietronero,et al.  High T(c) superconductivity in MgB2 by nonadiabatic pairing. , 2001, Physical review letters.

[58]  K. Shimizu,et al.  Metallic CsI at pressures of up to 220 gigapascals , 1998, Science.

[59]  K. Shimizu,et al.  Superconductivity in oxygen , 1998, Nature.

[60]  Y. Uemura Bose-Einstein to BCS crossover picture for high-Tc cuprates , 1997 .

[61]  J. Carbotte,et al.  Properties of boson-exchange superconductors , 1990 .

[62]  J. W. Halley,et al.  Simple Model for Characterizing the Electrical Resistivity in A − 15 Superconductors , 1977 .

[63]  Z. Fisk,et al.  Saturation of the high-temperature normal-state electrical resistivity of superconductors , 1976 .

[64]  R. Dynes,et al.  Transition temperature of strong-coupled superconductors reanalyzed , 1975 .

[65]  R. Dynes McMillan's equation and the Tc of superconductors , 1972 .

[66]  E. Helfand,et al.  Temperature and Purity Dependence of the Superconducting Critical Field, H c 2 . II , 1966 .

[67]  E. Helfand,et al.  Temperature and Purity Dependence of the Superconducting Critical Field, H c 2 . III. Electron Spin and Spin-Orbit Effects , 1966 .

[68]  F. Bloch Zum elektrischen Widerstandsgesetz bei tiefen Temperaturen , 1930 .

[69]  K. Kudo,et al.  Superconductivity in Mg2Ir3Si: A Fully Ordered Laves Phase , 2020 .

[70]  J. Arvanitidisa,et al.  SR studies of superconducting MgB 1 . 96 C 0 . 04 , 2002 .

[71]  C. Poole Chapter 2 – Properties of the normal metallic state , 2000 .

[72]  W. F. Peck,et al.  Superconductivity near 30 K without copper: the Ba0.6K0.4BiO3 perovskite , 1988, Nature.

[73]  P. Hertel TRANSITION TEMPERATURE OF STRONG-COUPLED SUPERCONDUCTORS. , 1971 .

[74]  E. Grüneisen Die Abhängigkeit des elektrischen Widerstandes reiner Metalle von der Temperatur , 1933 .