ABIOTIC OZONE AND OXYGEN IN ATMOSPHERES SIMILAR TO PREBIOTIC EARTH

The search for life on planets outside our solar system will use spectroscopic identification of atmospheric biosignatures. The most robust remotely detectable potential biosignature is considered to be the detection of oxygen (O2) or ozone (O3) simultaneous to methane (CH4) at levels indicating fluxes from the planetary surface in excess of those that could be produced abiotically. Here we use an altitude-dependent photochemical model with the enhanced lower boundary conditions necessary to carefully explore abiotic O2 and O3 production on lifeless planets with a wide variety of volcanic gas fluxes and stellar energy distributions. On some of these worlds, we predict limited O2 and O3 buildup, caused by fast chemical production of these gases. This results in detectable abiotic O3 and CH4 features in the UV-visible, but no detectable abiotic O2 features. Thus, simultaneous detection of O3 and CH4 by a UV-visible mission is not a strong biosignature without proper contextual information. Discrimination between biological and abiotic sources of O2 and O3 is possible through analysis of the stellar and atmospheric context—particularly redox state and O atom inventory—of the planet in question. Specifically, understanding the spectral characteristics of the star and obtaining a broad wavelength range for planetary spectra should allow more robust identification of false positives for life. This highlights the importance of wide spectral coverage for future exoplanet characterization missions. Specifically, discrimination between true and false positives may require spectral observations that extend into infrared wavelengths and provide contextual information on the planet’s atmospheric chemistry.

[1]  T. Robinson MODELING THE INFRARED SPECTRUM OF THE EARTH–MOON SYSTEM: IMPLICATIONS FOR THE DETECTION AND CHARACTERIZATION OF EARTHLIKE EXTRASOLAR PLANETS AND THEIR MOONLIKE COMPANIONS , 2011, 1110.3744.

[2]  J. Lederberg,et al.  Signs of Life: Criterion-System of Exobiology , 1965, Nature.

[3]  Wayne B. Landsman,et al.  A catalog of stellar Lyman-alpha fluxes , 1993 .

[4]  S. Seager,et al.  Exoplanet Atmospheres , 2010 .

[5]  E. Cady,et al.  Exo-S: Starshade Probe-Class Exoplanet Direct Imaging Mission Concept , 2014 .

[6]  D. Catling 6.7 – The Great Oxidation Event Transition , 2014 .

[7]  W. Cash Detection of Earth-like planets around nearby stars using a petal-shaped occulter , 2006, Nature.

[8]  Franck Lefèvre,et al.  Comparison of HIPWAC and Mars Express SPICAM observations of ozone on Mars 2006–2008 and variation from 1993 IRHS observations , 2009 .

[9]  D. Crisp,et al.  Ground‐based near‐infrared observations of the Venus nightside: The thermal structure and water abundance near the surface , 1996 .

[10]  Christopher P. McKay,et al.  Mars-Like Soils in the Atacama Desert, Chile, and the Dry Limit of Microbial Life , 2003, Science.

[11]  Ruth Titz,et al.  The Response of Atmospheric Chemistry on Earthlike Planets around F, G, and K stars to Small Variations in Orbital Distance , 2006, astro-ph/0610460.

[12]  G. Soffen,et al.  Scientific Results of the Viking Missions , 1976, Science.

[13]  WEIGHING “EL GORDO” WITH A PRECISION SCALE: HUBBLE SPACE TELESCOPE WEAK-LENSING ANALYSIS OF THE MERGING GALAXY CLUSTER ACT-CL J0102–4915 AT z = 0.87 , 2013, 1309.5097.

[14]  Ryan C. Terrien,et al.  HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: NEW ESTIMATES , 2013, 1301.6674.

[15]  David Crisp,et al.  Intercomparison of shortwave radiative transfer codes and measurements , 2005 .

[16]  S. Hawley,et al.  The Great Flare of 1985 April 12 on AD Leonis , 1991 .

[17]  J. Kasting,et al.  Synthetic spectra of simulated terrestrial atmospheres containing possible biomarker gases. , 2000, Icarus.

[18]  Anna Fedorova,et al.  A layer of ozone detected in the nightside upper atmosphere of Venus , 2011 .

[19]  Laura Schaefer,et al.  Earth's earliest atmospheres. , 2010, Cold Spring Harbor perspectives in biology.

[20]  J. Lovelock,et al.  A Physical Basis for Life Detection Experiments , 1965, Nature.

[21]  Franck Selsis,et al.  Signature of life on exoplanets: Can Darwin produce false positive detections? , 2002 .

[22]  SETI Institute,et al.  Target Selection for SETI. I. A Catalog of Nearby Habitable Stellar Systems , 2003 .

[23]  D. Sasselov,et al.  DETECTING PLANETARY GEOCHEMICAL CYCLES ON EXOPLANETS: ATMOSPHERIC SIGNATURES AND THE CASE OF SO2 , 2010 .

[24]  Kevin France,et al.  THE ULTRAVIOLET RADIATION ENVIRONMENT AROUND M DWARF EXOPLANET HOST STARS , 2012, 1212.4833.

[25]  M. Gaffey,et al.  The Chemical Evolution of the Atmosphere and Oceans , 1984 .

[26]  F. Lefévre,et al.  Ozone abundance on Mars from infrared heterodyne spectra: II. Validating photochemical models , 2006 .

[27]  S. Hawley,et al.  Multiwavelength Observations of Flares on AD Leonis , 2003 .

[28]  Stuart B. Shaklan,et al.  Occulting ozone observatory science overview , 2010, Astronomical Telescopes + Instrumentation.

[29]  T. Encrenaz,et al.  A sensitive search for organics (CH4, CH3OH, H2CO, C2H6, C2H2, C2H4), hydroperoxyl (HO2), nitrogen compounds (N2O, NH3, HCN) and chlorine species (HCl, CH3Cl) on Mars using ground-based high-resolution infrared spectroscopy , 2013 .

[30]  Martijn Gough Climate change , 2009, Canadian Medical Association Journal.

[31]  Stephen Unwin,et al.  Science with an 8-meter to 16-meter optical/UV space telescope , 2008, Astronomical Telescopes + Instrumentation.

[32]  Suzanne L. Hawley,et al.  The Palomar/MSU Nearby-Star Spectroscopic Survey. I. The Northern M Dwarfs -Bandstrengths and Kinematics , 1995 .

[33]  Kevin France,et al.  High stellar FUV/NUV ratio and oxygen contents in the atmospheres of potentially habitable planets , 2013, 1310.2590.

[34]  C. Sotin,et al.  A new family of planets? Ocean-Planets , 2003 .

[35]  R. Laureijs,et al.  Incidence and survival of remnant disks around main-sequence stars , 2000, astro-ph/0011137.

[36]  James F. Kasting,et al.  A coupled atmosphere–ecosystem model of the early Archean Earth , 2005 .

[37]  F. Selsis,et al.  Atmospheric constraints for the CO2 partial pressure on terrestrial planets near the outer edge of the habitable zone , 2012, 1211.4367.

[38]  Edward W. Schwieterman,et al.  DETECTION OF OCEAN GLINT AND OZONE ABSORPTION USING LCROSS EARTH OBSERVATIONS , 2014, 1405.4557.

[39]  V. L. Orkin,et al.  Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 16, Supplement to Evaluation 15: Update of Key Reactions , 2009 .

[40]  Karl K. Turekian,et al.  Treatise on geochemistry , 2014 .

[41]  Kevin France,et al.  TIME-RESOLVED ULTRAVIOLET SPECTROSCOPY OF THE M-DWARF GJ 876 EXOPLANETARY SYSTEM , 2012, 1204.1976.

[42]  F. Selsis,et al.  Potential biosignatures in super-Earth atmospheres I. Spectral appearance of super-Earths around M dwarfs , 2011 .

[43]  John S. Lewis,et al.  Book Review: The chemical evolution of the atmosphere and oceans. By Heinrich D. Holland. Princeton Univ. Press, Princeton, N.J., 1984. pp., pb 24.50, hb 75.00 , 1985 .

[44]  Mark Clampin,et al.  Discovery and Characterization of Transiting SuperEarths Using an All-Sky Transit Survey and Follow-Up by the James Webb Space Telescope , 2010 .

[45]  Oliver P. Lay,et al.  Terrestrial Planet Finder Interferometer Science Working Group Report , 2007 .

[46]  Tyler D. Robinson,et al.  DETECTING OCEANS ON EXTRASOLAR PLANETS USING THE GLINT EFFECT , 2010, 1008.3864.

[47]  M. Hannington,et al.  Atmospheric sulfur rearrangement 2.7 billion years ago: evidence for oxygenic photosynthesis. , 2013 .

[48]  Stuart B. Shaklan,et al.  Occulting ozone observatory ability to discover and locate single and multiple Earth-like planets in habitable zones , 2010, Astronomical Telescopes + Instrumentation.

[49]  F. S. Brown,et al.  The Viking Biological Investigation: Preliminary Results , 1976, Science.

[50]  G. Laughlin,et al.  Discovery and Characterization of Transiting Super Earths Using an All-Sky Transit Survey and Follow-up by the James Webb Space Telescope , 2009, 0903.4880.

[51]  J. Blamont,et al.  First Detection of Ozone in the Middle Atmosphere of Mars from Solar Occultation Measurements , 1992 .

[52]  Aki Roberge,et al.  A starshade for JWST: science goals and optimization , 2009, Optical Engineering + Applications.

[53]  S. Hawley,et al.  Characterizing the Near-UV Environment of M Dwarfs , 2005, 0711.1861.

[54]  V. L. Orkin,et al.  Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies: Evaluation Number 18 , 2015 .

[55]  Graham Berriman,et al.  Infrared Spectra of Low-Mass Stars: Toward a Temperature Scale for Red Dwarfs , 1996 .

[56]  D. Buhl,et al.  Ozone abundance on Mars from infrared heterodyne spectra: I. Acquisition, retrieval, and anticorrelation with water vapor , 2006 .

[57]  The age-activity-rotation relationship in solar-type stars , 2004, astro-ph/0406651.

[58]  I. Reid,et al.  Meeting the Cool Neighbors. III. Spectroscopy of Northern NLTT Stars , 2002, astro-ph/0202461.

[59]  W. Traub,et al.  TRANSITS OF EARTH-LIKE PLANETS , 2009, 0903.3371.

[60]  Sara Seager,et al.  PHOTOCHEMISTRY IN TERRESTRIAL EXOPLANET ATMOSPHERES. I. PHOTOCHEMISTRY MODEL AND BENCHMARK CASES , 2012, 1210.6885.

[61]  Pushpam Kumar Agriculture (Chapter8) in IPCC, 2007: Climate change 2007: Mitigation of Climate Change. Contribution of Working Group III to the Fourth assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[62]  J. Valenti,et al.  Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs , 2005 .

[63]  George L. Hobby,et al.  The Viking Carbon Assimilation Experiments: Interim Report , 1976, Science.

[64]  C. Sagan,et al.  Earth and Mars: Evolution of Atmospheres and Surface Temperatures , 1972, Science.