The Río Tinto Basin, Spain: Mineralogy, sedimentary geobiology, and implications for interpretation of outcrop rocks at Meridiani Planum, Mars

[1]  Steven W. Squyres,et al.  Geochemical modeling of evaporation processes on Mars: Insight from the sedimentary record at Meridiani Planum , 2005 .

[2]  D. Ming,et al.  Hematite spherules in basaltic tephra altered under aqueous, acid-sulfate conditions on Mauna Kea volcano, Hawaii: Possible clues for the occurrence of hematite-rich spherules in the Burns formation at Meridiani Planum, Mars , 2005 .

[3]  A. Knoll,et al.  Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars , 2005 .

[4]  A. Knoll,et al.  An astrobiological perspective on Meridiani Planum , 2005 .

[5]  Jeffrey R. Johnson,et al.  Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars , 2005 .

[6]  J. G. Stevens,et al.  Mössbauer mineral handbook , 2005 .

[7]  Carol R. Stoker,et al.  Characterization of a Subsurface Biosphere in a Massive Sulfide Deposits at Rio Tinto, Spain: Implications for Extant Life on Mars , 2005 .

[8]  R. Rieder,et al.  Chemistry of Rocks and Soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer , 2004, Science.

[9]  U. Bonnes,et al.  Jarosite and Hematite at Meridiani Planum from Opportunity's Mössbauer Spectrometer , 2004, Science.

[10]  P H Smith,et al.  Evidence from Opportunity's Microscopic Imager for Water on Meridiani Planum , 2004, Science.

[11]  Jeffrey R. Johnson,et al.  Soils of Eagle Crater and Meridiani Planum at the Opportunity Rover Landing Site , 2004, Science.

[12]  A. Knoll,et al.  The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars , 2004, Science.

[13]  Jeffrey R. Johnson,et al.  In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars , 2004, Science.

[14]  J. Rimstidt,et al.  Jarosite as an indicator of water-limited chemical weathering on Mars , 2004, Nature.

[15]  S. Ruff,et al.  Formation of the hematite-bearing unit in Meridiani Planum: Evidence for deposition in standing water , 2004 .

[16]  F. Gómez,et al.  Geomicrobiology of the Tinto River, a model of interest for biohydrometallurgy , 2003 .

[17]  R. Amann,et al.  Microbial Ecology of an Extreme Acidic Environment, the Tinto River , 2003, Applied and Environmental Microbiology.

[18]  F. Gómez,et al.  Geological record of an acidic environment driven by iron hydrochemistry: The Tinto River system , 2003 .

[19]  J. Catalán,et al.  STRUCTURE AND FUNCTION OF BENTHIC ALGAL COMMUNITIES IN AN EXTREMELY ACID RIVER 1 , 2003 .

[20]  M. Hodson,et al.  Fe-sulphate-rich evaporative mineral precipitates from the Río Tinto, southwest Spain , 2003, Mineralogical Magazine.

[21]  E. Achterberg,et al.  Metal behaviour in an estuary polluted by acid mine drainage: the role of particulate matter. , 2003, Environmental pollution.

[22]  F. Gómez,et al.  Interaction of the sulfur and iron cycles in the Tinto River ecosystem , 2002 .

[23]  J. Torres,et al.  The Tinto River, an extreme acidic environment under control of iron, as an analog of the Terra Meridiani hematite site of Mars , 2002 .

[24]  M. Sogin,et al.  Microbiology: Eukaryotic diversity in Spain's River of Fire , 2002, Nature.

[25]  María Carmen Moreno Garrido,et al.  Edad minima del gossan de Las Cruces: implicaciones sobre la edad del inicio de los ecosistemas extremos en la Faja Pirítica Ibérica , 2002 .

[26]  Richard V. Morris,et al.  Global mapping of Martian hematite mineral deposits: Remnants of water‐driven processes on early Mars , 2001 .

[27]  Richard V. Morris,et al.  Phyllosilicate-poor palagonitic dust from Mauna Kea Volcano (Hawaii): A mineralogical analogue for magnetic Martian dust? , 2001 .

[28]  J. Morales,et al.  Rio Tinto estuary (Spain): 5000 years of pollution , 2000 .

[29]  R. Clark,et al.  Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evide , 2000 .

[30]  N. Noffke,et al.  Microbial signatures in peritidal siliciclastic sediments: a catalogue , 2000 .

[31]  D. Nordstrom,et al.  Metal-sulfate Salts from Sulfide Mineral Oxidation , 2000 .

[32]  R. Amils,et al.  Microbial Community Composition and Ecology of an Acidic Aquatic Environment: The Tinto River, Spain , 2000, Microbial Ecology.

[33]  K. Hudson-Edwards,et al.  Mineralogy and geochemistry of alluvium contaminated by metal mining in the Rio Tinto area, southwest Spain , 1999 .

[34]  D. D. Runnells,et al.  Radiocarbon-dated ferricrete provides a record of natural acid rock drainage and paleoclimatic changes , 1999 .

[35]  D. Johnson,et al.  Reduction of Soluble Iron and Reductive Dissolution of Ferric Iron-Containing Minerals by Moderately Thermophilic Iron-Oxidizing Bacteria , 1998, Applied and Environmental Microbiology.

[36]  Y. Deschamps,et al.  Chert in the Iberian Pyrite Belt , 1997 .

[37]  R. Herbert Properties of Goethite and Jarosite Precipitated from Acidic Groundwater, Dalarna, Sweden , 1997 .

[38]  Jerry M. Bigham,et al.  SCHWERTMANNITE AND THE CHEMICAL MODELING OF IRON IN ACID SULFATE WATERS , 1996 .

[39]  H. V. Lauer,et al.  Pigmenting agents in Martian soils: inferences from spectral, Mossbauer, and magnetic properties of nanophase and other iron oxides in Hawaiian palagonitic soil PN-9. , 1993, Geochimica et cosmochimica acta.

[40]  A. Hrynkiewicz,et al.  Quadrupole splitting of the 14·4 keV gamma line of 57Fe in iron sulphates of the jarosite group , 1965 .