The Río Tinto Basin, Spain: Mineralogy, sedimentary geobiology, and implications for interpretation of outcrop rocks at Meridiani Planum, Mars
暂无分享,去创建一个
Richard V. Morris | John E. Gruener | Ricardo Amils | David C. Fernández-Remolar | Andrew H. Knoll | A. Knoll | R. Morris | R. Amils | J. Gruener | D. Fernández-Remolar
[1] Steven W. Squyres,et al. Geochemical modeling of evaporation processes on Mars: Insight from the sedimentary record at Meridiani Planum , 2005 .
[2] D. Ming,et al. Hematite spherules in basaltic tephra altered under aqueous, acid-sulfate conditions on Mauna Kea volcano, Hawaii: Possible clues for the occurrence of hematite-rich spherules in the Burns formation at Meridiani Planum, Mars , 2005 .
[3] A. Knoll,et al. Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars , 2005 .
[4] A. Knoll,et al. An astrobiological perspective on Meridiani Planum , 2005 .
[5] Jeffrey R. Johnson,et al. Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars , 2005 .
[6] J. G. Stevens,et al. Mössbauer mineral handbook , 2005 .
[7] Carol R. Stoker,et al. Characterization of a Subsurface Biosphere in a Massive Sulfide Deposits at Rio Tinto, Spain: Implications for Extant Life on Mars , 2005 .
[8] R. Rieder,et al. Chemistry of Rocks and Soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer , 2004, Science.
[9] U. Bonnes,et al. Jarosite and Hematite at Meridiani Planum from Opportunity's Mössbauer Spectrometer , 2004, Science.
[10] P H Smith,et al. Evidence from Opportunity's Microscopic Imager for Water on Meridiani Planum , 2004, Science.
[11] Jeffrey R. Johnson,et al. Soils of Eagle Crater and Meridiani Planum at the Opportunity Rover Landing Site , 2004, Science.
[12] A. Knoll,et al. The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars , 2004, Science.
[13] Jeffrey R. Johnson,et al. In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars , 2004, Science.
[14] J. Rimstidt,et al. Jarosite as an indicator of water-limited chemical weathering on Mars , 2004, Nature.
[15] S. Ruff,et al. Formation of the hematite-bearing unit in Meridiani Planum: Evidence for deposition in standing water , 2004 .
[16] F. Gómez,et al. Geomicrobiology of the Tinto River, a model of interest for biohydrometallurgy , 2003 .
[17] R. Amann,et al. Microbial Ecology of an Extreme Acidic Environment, the Tinto River , 2003, Applied and Environmental Microbiology.
[18] F. Gómez,et al. Geological record of an acidic environment driven by iron hydrochemistry: The Tinto River system , 2003 .
[19] J. Catalán,et al. STRUCTURE AND FUNCTION OF BENTHIC ALGAL COMMUNITIES IN AN EXTREMELY ACID RIVER 1 , 2003 .
[20] M. Hodson,et al. Fe-sulphate-rich evaporative mineral precipitates from the Río Tinto, southwest Spain , 2003, Mineralogical Magazine.
[21] E. Achterberg,et al. Metal behaviour in an estuary polluted by acid mine drainage: the role of particulate matter. , 2003, Environmental pollution.
[22] F. Gómez,et al. Interaction of the sulfur and iron cycles in the Tinto River ecosystem , 2002 .
[23] J. Torres,et al. The Tinto River, an extreme acidic environment under control of iron, as an analog of the Terra Meridiani hematite site of Mars , 2002 .
[24] M. Sogin,et al. Microbiology: Eukaryotic diversity in Spain's River of Fire , 2002, Nature.
[25] María Carmen Moreno Garrido,et al. Edad minima del gossan de Las Cruces: implicaciones sobre la edad del inicio de los ecosistemas extremos en la Faja Pirítica Ibérica , 2002 .
[26] Richard V. Morris,et al. Global mapping of Martian hematite mineral deposits: Remnants of water‐driven processes on early Mars , 2001 .
[27] Richard V. Morris,et al. Phyllosilicate-poor palagonitic dust from Mauna Kea Volcano (Hawaii): A mineralogical analogue for magnetic Martian dust? , 2001 .
[28] J. Morales,et al. Rio Tinto estuary (Spain): 5000 years of pollution , 2000 .
[29] R. Clark,et al. Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evide , 2000 .
[30] N. Noffke,et al. Microbial signatures in peritidal siliciclastic sediments: a catalogue , 2000 .
[31] D. Nordstrom,et al. Metal-sulfate Salts from Sulfide Mineral Oxidation , 2000 .
[32] R. Amils,et al. Microbial Community Composition and Ecology of an Acidic Aquatic Environment: The Tinto River, Spain , 2000, Microbial Ecology.
[33] K. Hudson-Edwards,et al. Mineralogy and geochemistry of alluvium contaminated by metal mining in the Rio Tinto area, southwest Spain , 1999 .
[34] D. D. Runnells,et al. Radiocarbon-dated ferricrete provides a record of natural acid rock drainage and paleoclimatic changes , 1999 .
[35] D. Johnson,et al. Reduction of Soluble Iron and Reductive Dissolution of Ferric Iron-Containing Minerals by Moderately Thermophilic Iron-Oxidizing Bacteria , 1998, Applied and Environmental Microbiology.
[36] Y. Deschamps,et al. Chert in the Iberian Pyrite Belt , 1997 .
[37] R. Herbert. Properties of Goethite and Jarosite Precipitated from Acidic Groundwater, Dalarna, Sweden , 1997 .
[38] Jerry M. Bigham,et al. SCHWERTMANNITE AND THE CHEMICAL MODELING OF IRON IN ACID SULFATE WATERS , 1996 .
[39] H. V. Lauer,et al. Pigmenting agents in Martian soils: inferences from spectral, Mossbauer, and magnetic properties of nanophase and other iron oxides in Hawaiian palagonitic soil PN-9. , 1993, Geochimica et cosmochimica acta.
[40] A. Hrynkiewicz,et al. Quadrupole splitting of the 14·4 keV gamma line of 57Fe in iron sulphates of the jarosite group , 1965 .