E-health: agent-based models to simulate behavior of individuals during an epidemic outbreak

Infectious diseases are a threat to human population. Governments around the world invest a lot of money on research of health area. Artificial intelligence techniques are useful to simulate real scenarios and save in public spending. In this paper, the authors present an agent based model of behavior and activities of individuals, according to a set schedule in a population within an urban environment, which is useful for innovation labs. The authors report results on simulations of the AH1N1 influenza epidemic outbreak of 2009 in Toluca, México. Conclusions indicate that the population density implies that a higher concentration of people corresponds to a higher probability of contagion. This parameter is influenced by the activities and interactions that the agents have within the simulation. The proposed model allows a broader perspective to the analysis of infectious disease in a population describing the behavior and interactions among individuals.

[1]  G Eysenbach,et al.  What is e-health? , 2001, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[2]  Li-ping Wang,et al.  American Journal of Epidemiology Original Contribution Distribution and Risk Factors of 2009 Pandemic Influenza a (h1n1) in Mainland China , 2022 .

[3]  J. C. Mendoza-Pérez,et al.  Modelo para estimación del comportamiento epidémico de la influenza A (H1N1) en México , 2012 .

[4]  J. Forrester Industrial Dynamics: A Major Breakthrough for Decision Makers , 2012 .

[5]  Robert Elsässer,et al.  Awareness and Movement vs. the Spread of Epidemics - Analyzing a Dynamic Model for Urban Social/Technological Networks , 2011, ArXiv.

[6]  F. Polack,et al.  Severe pandemic 2009 H1N1 influenza disease due to pathogenic immune complexes , 2010, Nature Medicine.

[7]  Kuk Jin Park,et al.  Evidence of Human-to-Swine Transmission of the Pandemic (H1N1) 2009 Influenza Virus in South Korea , 2010, Journal of Clinical Microbiology.

[8]  Abdel-Badeeh M. Salem,et al.  An agent-based modeling for pandemic influenza in Egypt , 2010, 2010 The 7th International Conference on Informatics and Systems (INFOS).

[9]  Liliana Perez,et al.  An agent-based approach for modeling dynamics of contagious disease spread , 2009, International journal of health geographics.

[10]  G. Ortega-Pierres,et al.  On the spread of the novel influenza A (H1N1) virus in Mexico. , 2009, Journal of infection in developing countries.

[11]  F. Navarro-Reynoso,et al.  El Hospital General de México en el Plan Nacional de Preparación y Respuesta ante una Pandemia de Influenza , 2009 .

[12]  M. van Boven,et al.  [Combating the new influenza A (H1N1) virus. II. Surveillance and non-pharmaceutical interventions]. , 2009, Nederlands tijdschrift voor geneeskunde.

[13]  Robert Schechter,et al.  Swine influenza A (H1N1) infection in two children--Southern California, March-April 2009. , 2009, MMWR. Morbidity and mortality weekly report.

[14]  D. Fleming,et al.  Update: novel influenza A (H1N1) virus infections - worldwide, May 6, 2009. , 2009, MMWR. Morbidity and mortality weekly report.

[15]  François Bousquet,et al.  Multi-agent systems in epidemiology: a first step for computational biology in the study of vector-borne disease transmission , 2008, BMC Bioinformatics.

[16]  Joshua M. Epstein,et al.  Coupled Contagion Dynamics of Fear and Disease: Mathematical and Computational Explorations , 2007, PloS one.

[17]  M A Karachunskiĭ,et al.  [Molecular epidemiology of tuberculosis]. , 2007, Problemy tuberkuleza i boleznei legkikh.

[18]  靳祯,et al.  A cellular automata model of epidemics of a heterogeneous susceptibility , 2006 .

[19]  Michael J. North,et al.  A Declarative Model Assembly Infrastructure for Verification and Validation , 2006, WCSS.

[20]  D. Cummings,et al.  Strategies for containing an emerging influenza pandemic in Southeast Asia , 2005, Nature.

[21]  Armin R. Mikler,et al.  Temporal analysis of infectious diseases: influenza , 2005, SAC '05.

[22]  Armin R. Mikler,et al.  Agent-Based Simulation Tools in Computational Epidemiology , 2004, IICS.

[23]  Aravind Srinivasan,et al.  Modelling disease outbreaks in realistic urban social networks , 2004, Nature.

[24]  Roberto Berchi,et al.  A comparison of simulation models applied to epidemics , 2002, J. Artif. Soc. Soc. Simul..

[25]  G. Sirakoulis,et al.  A cellular automaton model for the effects of population movement and vaccination on epidemic propagation , 2000 .

[26]  A.T. Lawniczak,et al.  Object-oriented implementation of CA/LGCA modelling applied to the spread of epidemics , 2000, 2000 Canadian Conference on Electrical and Computer Engineering. Conference Proceedings. Navigating to a New Era (Cat. No.00TH8492).

[27]  Robert L. Axtell,et al.  WHY AGENTS? ON THE VARIED MOTIVATIONS FOR AGENT COMPUTING IN THE SOCIAL SCIENCES , 2000 .

[28]  S. Chick,et al.  GERMS: an epidemiologic simulation tool for studying geographic and social effects on infection transmission , 1999, WSC'99. 1999 Winter Simulation Conference Proceedings. 'Simulation - A Bridge to the Future' (Cat. No.99CH37038).

[29]  Joshua M. Epstein,et al.  Growing Artificial Societies: Social Science from the Bottom Up , 1996 .

[30]  Philip O'neill Epidemic models featuring behaviour change , 1995, Advances in Applied Probability.

[31]  D van Soolingen,et al.  Molecular epidemiology of tuberculosis in Denmark in 1992 , 1995, Journal of clinical microbiology.

[32]  W. O. Kermack,et al.  Contributions to the mathematical theory of epidemics—II. The problem of endemicity , 1991, Bulletin of mathematical biology.

[33]  A D LANGMUIR,et al.  The surveillance of communicable diseases of national importance. , 1963, The New England journal of medicine.

[34]  HighWire Press Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character , 1934 .