A unified FPT Algorithm for Width of Partition Functions

During the last decades, several polynomial-time algorithms have been designed that decide if a graph has treewidth (resp., pathwidth, branchwidth, etc.) at most $k$, where $k$ is a fixed parameter. Amini {\it et al.} (to appear in SIAM J. Discrete Maths.) use the notions of partitioning-trees and partition functions as a generalized view of classical decompositions of graphs, namely tree-decomposition, path-decomposition, branch-decomposition, etc. In this paper, we propose a set of simple sufficient conditions on a partition function $\Phi$, that ensures the existence of a linear-time explicit algorithm deciding if a set $A$ has $\Phi$-width at most $k$ ($k$ fixed). In particular, the algorithm we propose unifies the existing algorithms for treewidth, pathwidth, linearwidth, branchwidth, carvingwidth and cutwidth. It also provides the first Fixed Parameter Tractable linear-time algorithm deciding if the $q$-branched treewidth, defined by Fomin {\it et al.} (Algorithmica 2007), of a graph is at most $k$ ($k$ and $q$ are fixed). Our decision algorithm can be turned into a constructive one by following the ideas of Bodlaender and Kloks (J. of Alg. 1996).

[1]  Paul D. Seymour,et al.  Graph minors. I. Excluding a forest , 1983, J. Comb. Theory, Ser. B.

[2]  László Babai,et al.  Canonical labeling of graphs , 1983, STOC.

[3]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[4]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[5]  Daniel Bienstock,et al.  Graph Searching, Path-Width, Tree-Width and Related Problems (A Survey) , 1989, Reliability Of Computer And Communication Networks.

[6]  Rolf H. Möhring,et al.  The Pathwidth and Treewidth of Cographs , 1990, SIAM J. Discret. Math..

[7]  Paul D. Seymour,et al.  Graph minors. X. Obstructions to tree-decomposition , 1991, J. Comb. Theory, Ser. B.

[8]  Bruce A. Reed,et al.  Finding approximate separators and computing tree width quickly , 1992, STOC '92.

[9]  Hans L. Bodlaender A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC '93.

[10]  Robin Thomas,et al.  Graph Searching and a Min-Max Theorem for Tree-Width , 1993, J. Comb. Theory, Ser. B.

[11]  Bruno Courcelle,et al.  Monadic Second-Order Evaluations on Tree-Decomposable Graphs , 1993, Theor. Comput. Sci..

[12]  Robin Thomas,et al.  Call routing and the ratcatcher , 1994, Comb..

[13]  Dieter Kratsch,et al.  Treewidth and Pathwidth of Permutation Graphs , 1995, SIAM J. Discret. Math..

[14]  Ton Kloks,et al.  Efficient and Constructive Algorithms for the Pathwidth and Treewidth of Graphs , 1993, J. Algorithms.

[15]  Paul D. Seymour,et al.  Graph Minors: XV. Giant Steps , 1996, J. Comb. Theory, Ser. B.

[16]  Dimitrios M. Thilikos,et al.  Constructive Linear Time Algorithms for Branchwidth , 1997, ICALP.

[17]  Maria J. Serna,et al.  Constructive Linear Time Algorithms for Small Cutwidth and Carving-Width , 2000, ISAAC.

[18]  Dimitrios M. Thilikos,et al.  On the monotonicity of games generated by symmetric submodular functions , 2003, Discret. Appl. Math..

[19]  Dimitrios M. Thilikos,et al.  Computing Small Search Numbers in Linear Time , 2004, IWPEC.

[20]  Paul D. Seymour,et al.  Graph Minors. XX. Wagner's conjecture , 2004, J. Comb. Theory B.

[21]  Nicolas Nisse,et al.  Nondeterministic Graph Searching: From Pathwidth to Treewidth , 2005, Algorithmica.

[22]  Richard Krueger Graph searching , 2005 .

[23]  Arie M. C. A. Koster,et al.  On the maximum cardinality search lower bound for treewidth , 2007, Discret. Appl. Math..

[24]  James R. Lee,et al.  Improved Approximation Algorithms for Minimum Weight Vertex Separators , 2008, SIAM J. Comput..

[25]  Nicolas Nisse,et al.  Monotonicity of non-deterministic graph searching , 2008, Theor. Comput. Sci..

[26]  Dimitrios M. Thilikos,et al.  An annotated bibliography on guaranteed graph searching , 2008, Theor. Comput. Sci..

[27]  A. Cayley A theorem on trees , 2009 .

[28]  Nicolas Nisse,et al.  Submodular partition functions , 2009, Discret. Math..

[29]  Bruno Courcelle,et al.  Special tree-width and the verification of monadic second-order graph pr operties , 2010, FSTTCS.