Efficient Recursive Multichannel Blind Image Restoration

This paper presents a novel multichannel recursive filtering (MRF) technique to address blind image restoration. The primary motivation for developing the MRF algorithm to solve multichannel restoration is due to its fast convergence in joint blur identification and image restoration. The estimated image is recursively updated from its previous estimates using a regularization framework. The multichannel blurs are identified iteratively using conjugate gradient optimization. The proposed algorithm incorporates a forgetting factor to discard the old unreliable estimates, hence achieving better convergence performance. A key feature of the method is its computational simplicity and efficiency. This allows the method to be adopted readily in real-life applications. Experimental results show that it is effective in performing blind multichannel blind restoration.

[1]  Aggelos K. Katsaggelos,et al.  Bayesian multichannel image restoration using compound Gauss-Markov random fields , 2003, IEEE Trans. Image Process..

[2]  Hung-Ta Pai,et al.  On eigenstructure-based direct multichannel blind image restoration , 2001, IEEE Trans. Image Process..

[3]  Mostafa Kaveh,et al.  A regularization approach to joint blur identification and image restoration , 1996, IEEE Trans. Image Process..

[4]  Nikolas P. Galatsanos,et al.  Least squares restoration of multichannel images , 1991, IEEE Trans. Signal Process..

[5]  Nikolas P. Galatsanos,et al.  Projection-based blind deconvolution , 1994 .

[6]  T. Chan,et al.  Convergence of the alternating minimization algorithm for blind deconvolution , 2000 .

[7]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[8]  Yoram Bresler,et al.  Perfect blind restoration of images blurred by multiple filters: theory and efficient algorithms , 1999, IEEE Trans. Image Process..

[9]  Jan Flusser,et al.  Multichannel blind iterative image restoration , 2003, IEEE Trans. Image Process..

[10]  Ben Liang,et al.  Blind image deconvolution using a robust GCD approach , 1999, IEEE Trans. Image Process..

[11]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[12]  Li Chen,et al.  Efficient discrete spatial techniques for blur support identification in blind image deconvolution , 2006, IEEE Trans. Signal Process..

[13]  Patrizio Campisi,et al.  Multichannel blind image deconvolution using the Bussgang algorithm: spatial and multiresolution approaches , 2003, IEEE Trans. Image Process..

[14]  Li Chen,et al.  A soft double regularization approach to parametric blind image deconvolution , 2005, IEEE Transactions on Image Processing.

[15]  Gene H. Golub,et al.  Matrix computations , 1983 .

[16]  B. R. Hunt,et al.  Karhunen-Loeve multispectral image restoration, part I: Theory , 1984 .

[17]  Nikolas P. Galatsanos,et al.  Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation , 1992, IEEE Trans. Image Process..

[18]  Aggelos K. Katsaggelos,et al.  Simultaneous multichannel image restoration and estimation of the regularization parameters , 1997, IEEE Trans. Image Process..

[19]  Tommy W. S. Chow,et al.  Double-regularization approach for blind restoration of multichannel imagery , 2001 .