An ultrafast rechargeable aluminium-ion battery

[1]  H. Dai,et al.  Plasmonic micro-beads for fluorescence enhanced, multiplexed protein detection with flow cytometry , 2014 .

[2]  Liangbing Hu,et al.  Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation , 2014, Nature Communications.

[3]  N. Hudak Chloroaluminate-Doped Conducting Polymers as Positive Electrodes in Rechargeable Aluminum Batteries , 2014 .

[4]  Xinzhi Yu,et al.  Super Long‐Life Supercapacitors Based on the Construction of Nanohoneycomb‐Like Strongly Coupled CoMoO4–3D Graphene Hybrid Electrodes , 2014, Advanced materials.

[5]  Michael P. Marshak,et al.  A metal-free organic–inorganic aqueous flow battery , 2014, Nature.

[6]  M. Winter,et al.  X-ray diffraction studies of the electrochemical intercalation of bis(trifluoromethanesulfonyl)imide anions into graphite for dual-ion cells , 2013 .

[7]  M. S. Rao,et al.  Fluorinated Natural Graphite Cathode for Rechargeable Ionic Liquid Based Aluminum–Ion Battery , 2013 .

[8]  L. Archer,et al.  The rechargeable aluminum-ion battery. , 2011, Chemical communications.

[9]  Hui‐Ming Cheng,et al.  Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. , 2011, Nature materials.

[10]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[11]  H. Dai,et al.  A new approach to solution-phase gold seeding for SERS substrates. , 2011, Small.

[12]  M. Lerner,et al.  The first graphite intercalation compounds containing tris(pentafluoroethyl)trifluorophosphate , 2010 .

[13]  Jeng‐Kuei Chang,et al.  Co-deposition of Al-Zn on AZ91D magnesium alloy in AlCl3-1-ethyl-3-methylimidazolium chloride ionic liquid , 2010 .

[14]  Douglas R. MacFarlane,et al.  Electrodeposition from Ionic Liquids , 2008 .

[15]  M. Armand,et al.  Building better batteries , 2008, Nature.

[16]  Michael Holzapfel,et al.  An in situ Raman study of the intercalation of supercapacitor-type electrolyte into microcrystalline graphite , 2006 .

[17]  A. Lasia,et al.  Electrodeposition of aluminium from ionic liquids: Part I—electrodeposition and surface morphology of aluminium from aluminium chloride (AlCl3)–1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) ionic liquids , 2006 .

[18]  Niels J. Bjerrum,et al.  Aluminum as anode for energy storage and conversion: a review , 2002 .

[19]  Ying-Jie Zhu,et al.  Nanometer-Size Monolayer and Multilayer Molecule Corrals on HOPG: A Depth-Resolved Mechanistic Study by STM , 2001 .

[20]  P. Wasserscheid,et al.  Ionic Liquids-New "Solutions" for Transition Metal Catalysis. , 2000, Angewandte Chemie.

[21]  I. Bae,et al.  Underpotential Deposition of Aluminum and Alloy Formation on Polycrystalline Gold Electrodes from AlCl3 / EMIC Room‐Temperature Molten Salts , 2000 .

[22]  L. Curtiss,et al.  Technological and scientific issues of room-temperature molten salts , 1999 .

[23]  M. Lerner,et al.  Graphite intercalation of bis(trifluoromethanesulfonyl) imide and other anions with perfluoroalkanesulfonyl substituents , 1999 .

[24]  P. Trulove,et al.  Dual Intercalating Molten Electrolyte Batteries , 1994 .

[25]  G. J. Dienes,et al.  An Introduction to Solid State Diffusion , 1988 .

[26]  M. Skyllas-Kazacos,et al.  Electrodeposition of aluminium in aluminium chloride/1-methyl-3-ethylimidazolium chloride , 1988 .

[27]  P. Gifford,et al.  An Aluminum/Chlorine Rechargeable Cell Employing a Room Temperature Molten Salt Electrolyte , 1988 .

[28]  J. J. Auborn,et al.  An Ambient Temperature Secondary Aluminum Electrode: Its Cycling Rates and Its Cycling Efficiencies , 1985 .

[29]  C. Hussey,et al.  Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis , 1982 .