Data Transfer and Interface Propagation in Multicomponent Simulations

This thesis addresses various computational problems arising from interfacing software components in three-dimensional multicomponent simulations. Typically, the computational domain for each physical component in such a simulation is discretized using a volume mesh, and the meshes for adjacent domains abut each other at a common interface surface. In general, the two discretizations of such an interface from different components differ both geometrically and combinatorially, and data must be exchanged between these disparate interface meshes. We address the problems of correlating disparate interface meshes and transferring data between them in a numerically accurate and physically conservative manner. In many cases, the interface evolves due to various processes, such as deformation, burning, or erosion, and we also consider the problem of propagating the interface surface dynamically as the components evolve over time. We first consider two variants of correlating nonmatching interface meshes. We present two efficient algorithms for the simpler one, mesh association , which associates vertices from one mesh with facets of another mesh. We then consider a more general variant, mesh overlay, which constructs a common refinement, that is, a finer mesh whose polygons subdivide the polygons of the input meshes. Our algorithm constructs a minimal common refinement in linear time using a conforming homeomorphism , and achieves robustness through the intersection principle to resolve any inconsistencies due to numerical errors. Second, we develop accurate, conservative, and efficient data transfer algorithms for exchanging data between interface meshes based on the common refinement. We analyze two classes of approaches, point-wise interpolation and weighted residual methods. The analyses and evaluation of existing methods lead us to a more advanced formulation and an optimal discretization for weighted residual methods. We demonstrate significant advantages of our methods, propose treatments for inconsistencies in interface geometries, and develop an optimally scalable parallel implementation. This thesis also considers the interface propagation problem, formulated with an entropy-satisfying Huygens' principle . We introduce the concepts of prevoid sets and critical times of an evolving interface, and develop a new approach based on these concepts to resolve singularities and topological changes in the interface. This problem is addressed in two dimensions, and a three-dimensional generalization is outlined.

[1]  Ulrich Finke,et al.  Overlaying simply connected planar subdivisions in linear time , 1995, SCG '95.

[2]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[3]  J. O´Rourke,et al.  Computational Geometry in C: Arrangements , 1998 .

[4]  Leonidas J. Guibas,et al.  Computing convolutions by reciprocal search , 1986, SCG '86.

[5]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[6]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[7]  Jamshid A. Samareh,et al.  Use of CAD Geometry in MDO , 1996 .

[8]  Joseph O'Rourke,et al.  Computational Geometry in C. , 1995 .

[9]  Hans-Peter Seidel,et al.  Multiresolution Shape Deformations for Meshes with Dynamic Vertex Connectivity , 2000, Comput. Graph. Forum.

[10]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[11]  Victor Eijkhout,et al.  LAPACK Working Note 56: Reducing Communication Costs in the Conjugate Gradient Algorithm on Distributed Memory Multiprocessors , 1993 .

[12]  Ivan J. Balaban,et al.  An optimal algorithm for finding segments intersections , 1995, SCG '95.

[13]  E. Puckett,et al.  A High-Order Projection Method for Tracking Fluid Interfaces in Variable Density Incompressible Flows , 1997 .

[14]  Marilyn J. Smith,et al.  An Evaluation of Computational Algorithms to Interface Between CFD and CSD Methodologies. , 1996 .

[15]  Alan Davies,et al.  An Introduction to Computational Geometry for Curves and Surfaces , 1996 .

[16]  Rainald Löhner,et al.  Conservative load projection and tracking for fluid-structure problems , 1996 .

[17]  A Samareh Jamshid,et al.  A Unified Approach to Modeling Multidisciplinary Interactions , 2000 .

[18]  Rainald Löhner Robust, Vectorized Search Algorithms for Interpolation on Unstructured Grids , 1995 .

[19]  Herbert Edelsbrunner,et al.  Topology preserving edge contraction , 1998 .

[20]  Bruce G. Baumgart A polyhedron representation for computer vision , 1975, AFIPS '75.

[21]  James Demmel,et al.  Parallel numerical linear algebra , 1993, Acta Numerica.

[22]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[23]  Wolfgang Dahmen,et al.  A Multigrid Algorithm for the Mortar Finite Element Method , 1999, SIAM J. Numer. Anal..

[24]  Leonidas J. Guibas,et al.  Epsilon geometry: building robust algorithms from imprecise computations , 1989, SCG '89.

[25]  Faker Ben THE MIXED MORTAR FINITE ELEMENT METHOD FOR THE INCOMPRESSIBLE STOKES PROBLEM: CONVERGENCE ANALYSIS* , 2000 .

[26]  Yvon Maday,et al.  The mortar element method for three dimensional finite elements , 1997 .

[27]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[28]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[29]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[30]  Steven J. Plimpton,et al.  A Parallel Rendezvous Algorithm for Interpolation Between Multiple Grids , 1998 .

[31]  Herbert Edelsbrunner,et al.  Geometry and Topology for Mesh Generation , 2001, Cambridge monographs on applied and computational mathematics.

[32]  Xiao-Chuan Cai,et al.  Overlapping Nonmatching Grid Mortar Element Methods for Elliptic Problems , 1999 .

[33]  George J. Fix EFFECTS OF QUADRATURE ERRORS IN FINITE ELEMENT APPROXIMATION OF STEADY STATE, EIGENVALUE AND PARABOLIC PROBLEMS , 1972 .

[34]  S. Brown,et al.  Displacement extrapolations for CFD+CSM aeroelastic analysis , 1997 .

[35]  Guru P. Guruswamy,et al.  Fluid-structural interactions using Navier-Stokes flow equations coupled with shell finite element structures , 1993 .

[36]  Rida T. Farouki,et al.  Analytic properties of plane offset curves , 1990, Comput. Aided Geom. Des..

[37]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[38]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[39]  Luis G. Reyna,et al.  Conservation of expected momentum and energy in Monte Carlo particle simulation , 1992 .

[40]  Michael T. Heath,et al.  Scientific Computing: An Introductory Survey , 1996 .

[41]  Micha Sharir,et al.  Fat Triangles Determine Linearly Many Holes , 1994, SIAM J. Comput..

[42]  John D. Ramshaw,et al.  Conservative rezoning algorithm for generalized two-dimensional meshes☆ , 1985 .

[43]  Axel Klar,et al.  Particle Methods: Theory and Applications , 1995 .

[44]  Charbel Farhat,et al.  Matching fluid and structure meshes for aeroelastic computations : a parallel approach , 1995 .

[45]  William D. Henshaw,et al.  A Scheme for Conservative Interpolation on Overlapping Grids , 1994, SIAM J. Sci. Comput..

[46]  Marc Alexa,et al.  Merging polyhedral shapes with scattered features , 1999, Proceedings Shape Modeling International '99. International Conference on Shape Modeling and Applications.

[47]  P. Tallec,et al.  Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity , 1998 .

[48]  Dan Stefanica,et al.  Domain Decomposition Methods for Mortar Finite Elements , 2000 .

[49]  Wayne E. Carlson,et al.  Shape transformation for polyhedral objects , 1992, SIGGRAPH.

[50]  Lutz Kettner Designing a data structure for polyhedral surfaces , 1997 .

[51]  Ethan D. Bloch A First Course in Geometric Topology and Differential Geometry , 1996 .

[52]  Victor J. Milenkovic,et al.  Verifiable Implementations of Geometric Algorithms Using Finite Precision Arithmetic , 1989, Artif. Intell..

[53]  R. N. Desmarais,et al.  Interpolation using surface splines. , 1972 .

[54]  Jim Ruppert,et al.  A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh Generation , 1995, J. Algorithms.

[55]  John K. Dukowicz Conservative rezoning (remapping) for general quadrilateral meshes , 1984 .

[56]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[57]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[58]  Jeffrey L. Young,et al.  Practical aspects of higher-order numerical schemes for wave propagation phenomena , 1999 .

[59]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[60]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.

[61]  M. Rudman INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 24, 671–691 (1997) VOLUME-TRACKING METHODS FOR INTERFACIAL FLOW CALCULATIONS , 2022 .

[62]  Steven Fortune,et al.  Robustness Issues in Geometric Algorithms , 1996, WACG.

[63]  I. Chang,et al.  Titan IV SRMU anomaly and redesign analyses , 1994 .

[64]  I. D. Parsons,et al.  COUPLED FLUID-STRUCTURE 3-D SOLID ROCKET MOTOR SIMULATIONS , 2001 .

[65]  John C. Browne Los alamos national laboratory welcome , 1986 .

[66]  Hiromasa Suzuki,et al.  Metamorphosis of Arbitrary Triangular Meshes , 2000, IEEE Computer Graphics and Applications.

[67]  S. McCormick,et al.  A multigrid tutorial (2nd ed.) , 2000 .

[68]  E. Kansa MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .

[69]  Marko Subasic,et al.  Level Set Methods and Fast Marching Methods , 2003 .

[70]  M. Berger ON CONSERVATION AT GRID INTERFACES. , 1987 .

[71]  Helmuth Späth,et al.  Two-dimensional spline interpolation algorithms , 1993 .

[72]  Xiao-Chuan Cai The Use of Pointwise Interpolation in Domain Decomposition Methods with Nonnested Meshes , 1995, SIAM J. Sci. Comput..

[73]  A Sci,et al.  VIRTUAL PROTOTYPING OF SOLID PROPELLANT ROCKETS , 2000 .

[74]  Todd Arbogast,et al.  Mixed Finite Element Methods on Nonmatching Multiblock Grids , 2000, SIAM J. Numer. Anal..

[75]  John E. Hopcroft,et al.  Towards implementing robust geometric computations , 1988, SCG '88.

[76]  Binh Pham,et al.  Offset curves and surfaces: a brief survey , 1992, Comput. Aided Des..

[77]  Per Christian Hansen,et al.  Rank-Deficient and Discrete Ill-Posed Problems , 1996 .

[78]  P. Woodward,et al.  SLIC (Simple Line Interface Calculation) , 1976 .

[79]  Kari Appa,et al.  Finite-surface spline , 1989 .

[80]  Chee-Keng Yap Symbolic Treatment of Geometric Degeneration , 1990, J. Symb. Comput..

[81]  Raimund Seidel,et al.  The Nature and Meaning of Perturbations in Geometric Computing , 1994, STACS.

[82]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[83]  W. Rider,et al.  Reconstructing Volume Tracking , 1998 .

[84]  Jeffrey Grandy,et al.  Conservative Remapping and Region Overlays by Intersecting Arbitrary Polyhedra , 1999 .

[85]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .

[86]  Takashi Maekawa,et al.  An overview of offset curves and surfaces , 1999, Comput. Aided Des..