A new recommendation technique for interval scaled multi-criteria rating systems incorporating intensity of preferences

We present Interval-Rec, a recommender system that gives predictions on items that are rated on multiple criteria. Although a five-star rating system or similar linguistic scales are used typically by on-line sites to enable their users to rate items such as content or products, ratings are considered usually as ordinal and treated as ratio during the calculation of predicted ratings. We demonstrate that these symbolic or lexical semantics convey information about the strength of user preferences in addition to the order of the rated items. The methodology we propose considers and treats such scales as interval and in the same time provide accurate recommendations to users. Evaluations using well-known and reliable data showed improved results over other significant multi-criteria recommender systems and state of the art single criterion method.

[1]  Nikos Manouselis,et al.  Analysis and Classification of Multi-Criteria Recommender Systems , 2007, World Wide Web.

[2]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .

[3]  Markus Zanker,et al.  Multi-criteria Ratings for Recommender Systems: An Empirical Analysis in the Tourism Domain , 2012, EC-Web.

[4]  Lakhmi C. Jain,et al.  Multimedia Services in Intelligent Environments: Advances in Recommender Systems , 2013 .

[5]  B. Roy Méthodologie multicritère d'aide à la décision , 1985 .

[6]  Lior Rokach,et al.  Data Mining And Knowledge Discovery Handbook , 2005 .

[7]  Alexis Tsoukiàs,et al.  Multicriteria User Modeling in Recommender Systems , 2011, IEEE Intelligent Systems.

[8]  Yoshua Bengio,et al.  Convergence Properties of the K-Means Algorithms , 1994, NIPS.

[9]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[10]  Gediminas Adomavicius,et al.  New Recommendation Techniques for Multicriteria Rating Systems , 2007, IEEE Intelligent Systems.

[11]  John Riedl,et al.  An Algorithmic Framework for Performing Collaborative Filtering , 1999, SIGIR Forum.

[12]  K. Margaritis,et al.  Analysis of Recommender Systems’ Algorithms , 2003 .

[13]  Dietmar Jannach,et al.  Recommending Hotels based on Multi-Dimensional Customer Ratings , 2012, ENTER.

[14]  Lakhmi C. Jain,et al.  Multimedia Services in Intelligent Environments: Recommendation Services , 2013 .

[15]  Yehuda Koren,et al.  OrdRec: an ordinal model for predicting personalized item rating distributions , 2011, RecSys '11.

[16]  Nikos Manouselis,et al.  Revisiting the Multi-Criteria Recommender System of a Learning Portal , 2012, RecSysTEL@EC-TEL.

[17]  Yi-Cheng Zhang,et al.  Recommender Systems , 2012, ArXiv.

[18]  S S Stevens,et al.  On the Theory of Scales of Measurement. , 1946, Science.

[19]  Alexander Tuzhilin,et al.  Towards the Next Generation of Recommender Systems , 2010, ICE-B 2010.

[20]  Yehuda Koren,et al.  Factorization meets the neighborhood: a multifaceted collaborative filtering model , 2008, KDD.

[21]  Bracha Shapira,et al.  Recommender Systems Handbook , 2015, Springer US.

[22]  S. S. Stevens,et al.  Ratio scales and category scales for a dozen perceptual continua. , 1957, Journal of experimental psychology.

[23]  John Riedl,et al.  Recommender systems in e-commerce , 1999, EC '99.

[24]  Gediminas Adomavicius,et al.  Multi-Criteria Recommender Systems , 2011, Recommender Systems Handbook.

[25]  Nikos A. Vlassis,et al.  The global k-means clustering algorithm , 2003, Pattern Recognit..

[26]  Denis Bouyssou,et al.  Building Criteria: A Prerequisite for MCDA , 1990 .

[27]  Thomas Hofmann,et al.  Collaborative filtering via gaussian probabilistic latent semantic analysis , 2003, SIGIR.

[28]  Nikolay Mehandjiev,et al.  Multi-criteria service recommendation based on user criteria preferences , 2011, RecSys '11.

[29]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .