Effects of Reverberation on the Relation Between Compression Speed and Working Memory for Speech-in-Noise Perception.
暂无分享,去创建一个
OBJECTIVES
Previous study has suggested that when listening in modulated noise, individuals benefit from different wide dynamic range compression (WDRC) speeds depending on their working memory ability. Reverberation reduces the modulation depth of signals and may impact the relation between WDRC speed and working memory. The purpose of this study was to examine this relation across a range of reverberant conditions.
DESIGN
Twenty-eight older listeners with mild-to-moderate sensorineural hearing impairment were recruited in the present study. Individual working memory was measured using a Reading Span test. Sentences were combined with noise at two signal to noise ratios (2 and 5 dB SNR), and reverberation was simulated at a range of reverberation times (0.00, 0.75, 1.50, and 3.00 sec). Speech intelligibility was measured in listeners when listening to the sentences processed with simulated fast-acting and slow-acting WDRC conditions.
RESULTS
There was a significant relation between WDRC speed and working memory with minimal or no reverberation. Consistent with previous research, this relation was such that individuals with high working memory had higher speech intelligibility with fast-acting WDRC, and individuals with low working memory performed better with slow-acting WDRC. However, at longer reverberation times, there was no relation between WDRC speed and working memory.
CONCLUSIONS
Consistent with previous studies, results suggest that there is an advantage of tailoring WDRC speed based on an individual's working memory under anechoic conditions. However, the present results further suggest that there may not be such a benefit in reverberant listening environments due to reduction in signal modulation.