Coercive Inequalities on Carnot Groups: Taming Singularities

In the setting of Carnot groups, we propose an approach of taming singularities to get coercive inequalities. That is, we develop a technique to introduce natural singularities in the energy function U in order to force one of the coercivity conditions. In particular, we explore explicit constructions of probability measures on Carnot groups which secure Poincaré and even Logarithmic Sobolev inequalities.

[1]  Jacek Cygan,et al.  Subadditivity of homogeneous norms on certain nilpotent Lie groups , 1981 .

[2]  P. Meyer,et al.  Sur les inegalites de Sobolev logarithmiques. I , 1982 .

[3]  Entropy Bounds for Gibbs Measures with Non-Gaussian Tails☆ , 2001 .

[4]  B. Zegarliński,et al.  From U-bounds to isoperimetry with applications to H-type groups , 2009, 0912.0236.

[5]  S. Bobkov,et al.  Distributions with Slow Tails and Ergodicity of Markov Semigroups in Infinite Dimensions , 2010 .

[6]  On the Lie Algebra of polarizable Carnot groups , 2020 .

[7]  B. Chow,et al.  Hamilton's Ricci Flow , 2018 .

[8]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[9]  V. Kontis,et al.  Markov semigroups with hypocoercive-type generator in Infinite Dimensions: Ergodicity and Smoothing , 2013, 1306.6452.

[10]  J. Rosen Sobolev Inequalities for Weight Spaces and Supercontractivity , 1976 .

[11]  Orlicz–Sobolev inequalities for sub-Gaussian measures and ergodicity of Markov semi-groups☆ , 2006, math/0611638.

[12]  Alice Guionnet,et al.  Lectures on Logarithmic Sobolev Inequalities , 2003 .

[13]  M. Ledoux,et al.  Analysis and Geometry of Markov Diffusion Operators , 2013 .

[14]  F. Barthe,et al.  Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry , 2004, math/0407219.

[15]  Francesco Uguzzoni,et al.  Stratified Lie groups and potential theory for their sub-Laplacians , 2007 .

[16]  S. Albeverio,et al.  Dirichlet forms and diffusion processes on rigged Hilbert spaces , 1977 .

[17]  James R. Lee,et al.  Lp metrics on the Heisenberg group and the Goemans-Linial conjecture , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[18]  R. Adams General logarithmic Sobolev inequalities and Orlicz imbeddings , 1979 .

[19]  M. Rao,et al.  Theory of Orlicz spaces , 1991 .

[20]  J. Inglis Coercive Inequalities for Generators of H¨ ormander Type , 2010 .

[21]  B. Zegarliński,et al.  Coercive Inequalities on Metric Measure Spaces , 2009, 0905.1713.

[22]  Introduction to Analysis on Lie Groups : , .

[23]  V. Kontis,et al.  Long- and short-time behaviour of hypocoercive-type operators in infinite dimensions: An analytic approach , 2017 .

[24]  T. K. Carne HEAT KERNELS AND SPECTRAL THEORY: (Cambridge Tracts in Mathematics 92) , 1990 .

[25]  Modified logarithmic Sobolev inequalities on R , 2006, math/0612026.

[26]  B. Zegarliński,et al.  Entropy Bounds and Isoperimetry , 2005 .

[27]  B. Zegarliński,et al.  Coercive inequalities for Hörmander type generators in infinite dimensions , 2007 .