A Review on Operational Modal Analysis Researches : Classification of Methods and Applications

Nowadays operational modal analysis has found a good ground in identification of system modal parameters. It has been substituted for traditional modal analysis in many practical and experimental cases. Furthermore implementation of OMA has resulted in the development of modal analysis applications. Although one can find a large number of researches on OMA methods and its different applications, review articles about OMA and its applications are limited. This paper reviews the development of OMA, different methods in OMA with and their key issues and research activities. We will classify researches on OMA up to present and try to address the most important ones. Among hundreds of articles and technical reports used in this study, about 80 papers are addressed. 708 IOMAC'09 – 3 International Operational Modal Analysis Conference few numbers of them have been focused on the review or categorizing the methods. This paper tries to categorize different methods of OMA and shortly reviews history of the development of Natural Excitation Technique (NExT), Stochastic Subspace Identification (SS1), Auto Regression Moving Average (ARMA), Frequency Domain Decomposition (FDD) and, Stochastic Realization. Also related topics such as mode shape normalization, load estimation, and OMA at the presence of harmonic excitation are investigated. Relevant and significant research papers and articles are referenced. 2 OPERATIONAL MODAL ANALYSIS METHODS Among different OMA methods, this section discusses history of the most important ones.

[1]  Rune Brincker,et al.  Some Methods to Determine Scaled Mode Shapes in Natural Input Modal Analysis , 2005 .

[2]  Robert B. Randall,et al.  Cyclostationarity and the cepstrum for operational modal analysis of MIMO systems—Part II: Obtaining scaled mode shapes through finite element model updating , 2007 .

[3]  C. Hoen,et al.  Subspace Identification of Modal Coordinate Time Series , 2006 .

[4]  Rune Brincker,et al.  Load Estimation from Natural input Modal Analysis , 2005 .

[5]  Rik Pintelon,et al.  Uncertainty calculation in (operational) modal analysis , 2007 .

[6]  E. Parloo,et al.  Force identification by means of in-operation modal models , 2002 .

[7]  P. Andersen,et al.  Estimation of Modal Parameters and their Uncertainties , 1999 .

[8]  Rune Brincker,et al.  A Way of Getting Scaled Mode Shapes in Output Only Modal Testing , 2003 .

[9]  Rune Brincker,et al.  Improvement of Frequency Domain Output Only Modal Identification from the Application of the Random Decrement Technique , 2004 .

[10]  Carlos E. Ventura,et al.  Damping estimation by frequency domain decomposition , 2001 .

[11]  Maurice Goursat,et al.  Automated Modal Parameter Estimation for Operational Modal Analysis of Large Systems , 2007 .

[12]  F. Shen,et al.  USING THE CROSS-CORRELATION TECHNIQUE TO EXTRACT MODAL PARAMETERS ON RESPONSE-ONLY DATA , 2003 .

[13]  Poul Henning Kirkegaard,et al.  Theory of Covariance Equivalent ARMAV Models of Civil Engineering Structures , 1995 .

[14]  K. Engelen Load spectrum estimation from output-only measurements applied to a spray boom model , 2006 .

[15]  Joseph Lardies,et al.  Identification of modal parameters using the wavelet transform , 2002 .

[16]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[17]  Rune Brincker,et al.  Modal Indicators for Operational Modal Identification , 2001 .

[18]  Rune Brincker,et al.  Vector Triggering Random Decrement Technique for Higher Identification Accuracy , 1996 .

[19]  S. Chauhan,et al.  Considerations in the Application of Spatial Domain Algorithms to Operational Modal Analysis , 2006 .

[20]  Poul Henning Kirkegaard,et al.  Identification of System Parameters by the Random Decrement Technique , 1991 .

[21]  Tadeusz Uhl,et al.  Identification of modal parameters for nonstationary mechanical systems , 2005 .

[22]  Rune Brincker,et al.  Application of Vector Triggering Random Decrement , 1996 .

[23]  Bart De Moor,et al.  Subspace Identification for Linear Systems: Theory ― Implementation ― Applications , 2011 .

[24]  H. A. Cole,et al.  On-line failure detection and damping measurement of aerospace structures by random decrement signatures , 1973 .

[25]  S. R. Ibrahim Random Decrement Technique for Modal Identification of Structures , 1977 .

[26]  A. Benveniste,et al.  Single sample modal identification of a nonstationary stochastic process , 1985, IEEE Transactions on Automatic Control.

[27]  Chih-Chen Chang,et al.  Covariance-driven asymptotic wavelet analysis for modal identification , 2004, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[28]  Christof Devriendt,et al.  The use of transmissibility measurements in output-only modal analysis , 2007 .

[29]  P. Andersen,et al.  Understanding Stochastic Subspace Identification , 2006 .

[30]  Rune Brincker,et al.  Scaling the Mode Shapes of a Building Model by Mass Changes , 2004 .

[31]  Rune Brincker,et al.  Application of the Random Decrement Technique in Operational Modal Analysis , 2005 .

[32]  Filipe Magalhães,et al.  Damping Estimation Using Free Decays and Ambient Vibration Tests , 2010 .

[33]  Prasenjit Mohanty,et al.  Modified SSTD method to account for harmonic excitations during operational modal analysis , 2004 .

[34]  E. Parloo,et al.  Sensitivity-based operational mode shape normalisation: Application to a bridge , 2005 .

[35]  P. Kurowski Modal-Model Applications for Large Energetic Machines , 2007 .

[36]  Wei-Xin Ren,et al.  EMD-based stochastic subspace identification of structures from operational vibration measurements , 2005 .

[37]  J. Antoni Blind separation of vibration components: Principles and demonstrations , 2005 .

[38]  Joanna Iwaniec Output-Only Technique for Parameter Identification of Nonlinear Systems Working under Operational Loads , 2007 .

[39]  Daniel Rixen,et al.  A modified Ibrahim time domain algorithm for operational modal analysis including harmonic excitation , 2004 .

[40]  Poul Henning Kirkegaard,et al.  Identification of Civil Engineering Structures using Vector ARMA Models , 1998 .

[41]  Palle Andersen,et al.  An Indicator for Separation of Structural and Harmonic Modes in Output-Only Modal Testing , 2000 .

[42]  A. B. Dunwoody,et al.  A Mathematical Basis for the Random Decrement Vibration Signature Analysis Technique , 1982 .

[43]  E. Parloo,et al.  Maximum likelihood identification of non-stationary operational data , 2003 .

[44]  Poul Henning Kirkegaard,et al.  On the Uncertainty of Identification of Civil Engineering Structures Using ARMA Models , 1995 .

[45]  Rune Brincker,et al.  Scaling Factor Estimation by the Mass Change Method , 2005 .

[46]  E. Parloo,et al.  SENSITIVITY-BASED OPERATIONAL MODE SHAPE NORMALISATION , 2002 .

[47]  Rune Brincker,et al.  Load Estimation by Frequency Domain Decomposition , 2007 .

[48]  J. C. Asmussen,et al.  A New Approach for Predicting the Variance of Random Decrement Functions , 1998 .

[49]  Steen Krenk,et al.  Estimation of Correlation Functions by the Random Decrement Technique , 1991 .

[50]  Pelayo Fernández,et al.  Scaling Factor Estimation Using an Optimized Mass Change Strategy, Part 1: Theory , 2007 .

[51]  S. R. Ibrahim,et al.  Random Decrement: Identification of Structures Subjected to Ambient Excitation , 1998 .

[52]  Daniel Rixen,et al.  Modified ERA method for operational modal analysis in the presence of harmonic excitations , 2006 .

[53]  Luc Schueremans,et al.  Stochastic Subspace Techniques applied to parameter identification of civil engineering structures , 1995 .

[54]  Rune Brincker ARMA Models in Modal Space , 1999 .

[55]  Marcello Vanali,et al.  Evaluation of performances and reliability of a wavelet based modal parameter estimation method applied on the modal identification of the Meazza stadium grandstands in Milan , 2007 .

[56]  Carlos E. Ventura,et al.  Structural assessment by modal analysis in Western Canada , 1997 .

[57]  D. Hanson,et al.  Cyclostationarity and the cepstrum for operational modal analysis of mimo systems-Part I Modal parameter identification , 2007 .

[58]  S. R. Ibrahim,et al.  Modal Parameter Identification from Responses of General Unknown Random Inputs , 1995 .

[59]  Rune Brincker,et al.  Using Enhanced Frequency Domain Decomposition as a Robust Technique to Harmonic Excitation in Operational Modal Analysis , 2006 .

[60]  Bart De Moor,et al.  Subspace algorithms for the stochastic identification problem, , 1993, Autom..

[61]  Joseph C. S. Lai,et al.  ARMAX modal parameter identification in the presence of unmeasured excitation—I: Theoretical background , 2007 .

[62]  James Clary,et al.  Stochastic theory of minimal realization , 1976, 1976 IEEE Conference on Decision and Control including the 15th Symposium on Adaptive Processes.

[63]  Yukio Tamura,et al.  DAMPING ESTIMATION OF ENGINEERING STRUCTURES WITH AMBIENT RESPONSE MEASUREMENTS , 2002 .

[64]  A. Benveniste,et al.  MERGING SENSOR DATA FROM MULTIPLE MEASUREMENT SET-UPS FOR NON-STATIONARY SUBSPACE-BASED MODAL ANALYSIS , 2002 .

[65]  Prasenjit Mohanty,et al.  Operational modal analysis in the presence of harmonic excitation , 2004 .

[66]  Pelayo Fernández,et al.  Scaling Factor Estimation Using Optimized Mass Change Strategy, Part 2: Experimental Results , 2007 .

[67]  Hongxing Hua,et al.  Modal parameter identification using response data only , 2005 .