Sensitivity enhancement in photonic crystal slab biosensors.

Refractive index sensitivity of guided resonances in photonic crystal slabs is analyzed. We show that modal properties of guided resonances strongly affect spectral sensitivity and quality factors, resulting in substantial enhancement of refractive index sensitivity. A three-fold spectral sensitivity enhancement is demonstrated for suspended slab designs, in contrast to designs with a slab resting over a substrate. Spectral sensitivity values are additionally shown to be unaffected by quality factor reductions, which are common to fabricated photonic crystal nano-structures. Finally, we determine that proper selection of photonic crystal slab design parameters permits biosensing of a wide range of analytes, including proteins, antigens, and cells. These photonic crystals are compatible with large-area biosensor designs, permitting direct access to externally incident optical beams in a microfluidic device.

[1]  Steven G. Johnson,et al.  Meep: A flexible free-software package for electromagnetic simulations by the FDTD method , 2010, Comput. Phys. Commun..

[2]  Ahmet Ali Yanik,et al.  Sub-wavelength Nanofluidics in Photonic Crystal Sensors References and Links , 2022 .

[3]  Shanhui Fan,et al.  Resonance-enhanced optical forces between coupled photonic crystal slabs. , 2009, Optics express.

[4]  David Erickson,et al.  A multiplexed optofluidic biomolecular sensor for low mass detection. , 2009, Lab on a chip.

[5]  Sanja Zlatanovic,et al.  Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration , 2009 .

[6]  Snjezana Tomljenovic-Hanic,et al.  Comparison of the sensitivity of air and dielectric modes in photonic crystal slab sensors. , 2009, Optics express.

[7]  Y. Peter,et al.  Tunable structures comprising two photonic crystal slabs--optical study in view of multi-analyte enhanced detection. , 2009, Optics express.

[8]  Charles J. Choi,et al.  Microfluidic chip for combinatorial mixing and screening of assays. , 2009, Lab on a Chip.

[9]  Harry E. Ruda,et al.  A pillar-array based two-dimensional photonic crystal microcavity , 2009 .

[10]  Juejun Hu,et al.  Design guidelines for optical resonator biochemical sensors , 2009 .

[11]  B. Cunningham,et al.  Rapid Specific and Label-Free Detection of Porcine Rotavirus Using Photonic Crystal Biosensors , 2009, IEEE Sensors Journal.

[12]  B. Liedberg,et al.  Gradient hydrogel matrix for microarray and biosensor applications: an imaging SPR study. , 2009, Biomacromolecules.

[13]  Y. Nazirizadeh,et al.  Experimental quality factor determination of guided-mode resonances in photonic crystal slabs , 2008 .

[14]  Wei Zhang,et al.  Enhanced fluorescence on a photonic crystal surface incorporating nanorod structures. , 2008, Small.

[15]  Y. Peter,et al.  Guided-mode resonance photonic crystal slab sensors based on bead monolayer geometry. , 2008, Optics express.

[16]  R. Nitschke,et al.  Quantum dots versus organic dyes as fluorescent labels , 2008, Nature Methods.

[17]  B. Cunningham,et al.  High Sensitivity Plastic-Substrate Photonic Crystal Biosensor , 2008, IEEE Sensors Journal.

[18]  Yuze Sun,et al.  Sensitive optical biosensors for unlabeled targets: a review. , 2008, Analytica chimica acta.

[19]  S. Arnold,et al.  Whispering-gallery-mode biosensing: label-free detection down to single molecules , 2008, Nature Methods.

[20]  M. Lipson,et al.  On-chip gas detection in silicon optical microcavities , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[21]  Meng Lu,et al.  A Sensitivity Model for Predicting Photonic Crystal Biosensor Performance , 2008, IEEE Sensors Journal.

[22]  Xudong Fan,et al.  On the performance quantification of resonant refractive index sensors. , 2008, Optics express.

[23]  P. Fauchet,et al.  Nanoscale microcavity sensor for single particle detection. , 2007, Optics letters.

[24]  S. Xiao,et al.  Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications , 2007, 0707.1194.

[25]  Francesco Dell'Olio,et al.  Optical sensing by optimized silicon slot waveguides. , 2007, Optics express.

[26]  Meredith M. Lee,et al.  Integrated semiconductor optical sensors for cellular and neural imaging. , 2007, Applied optics.

[27]  Shanhui Fan,et al.  Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing , 2007, SPIE BiOS.

[28]  N. Miura,et al.  Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest , 2007 .

[29]  Brian T. Cunningham,et al.  A label-free photonic crystal biosensor imaging method for detection of cancer cell cytotoxicity and proliferation , 2007, Apoptosis.

[30]  Ian M. White,et al.  Aqueous mercuric ion detection with microsphere optical ring resonator sensors , 2006 .

[31]  F. Pinaud,et al.  Peptide coated quantum dots for biological applications , 2006, IEEE Transactions on NanoBioscience.

[32]  W E Moerner,et al.  Single-molecule mountains yield nanoscale cell images , 2006, Nature Methods.

[33]  Ye Fang,et al.  Resonant waveguide grating biosensor for living cell sensing. , 2006, Biophysical journal.

[34]  Andrea M Armani,et al.  Heavy water detection using ultra-high-Q microcavities. , 2006, Optics letters.

[35]  S. Weiss,et al.  Single-molecule fluorescence studies of protein folding and conformational dynamics. , 2006, Chemical reviews.

[36]  Philippe M. Fauchet,et al.  Quantitative analysis of the sensitivity of porous silicon optical biosensors , 2006 .

[37]  Dan Davidov,et al.  Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells. , 2006, Biophysical journal.

[38]  Roman Pogreb,et al.  Surface-plasmon resonance with infrared excitation: Studies of phospholipid membrane growth , 2005 .

[39]  Ralph Weissleder,et al.  Molecular optical imaging: Applications leading to the development of present day therapeutics , 2005, NeuroRX.

[40]  Ofer Levi,et al.  Monolithically integrated semiconductor fluorescence sensor for microfluidic applications , 2005 .

[41]  Shanhui Fan,et al.  Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorders. , 2004, Optics letters.

[42]  Jelena Vucković,et al.  Polarization control and sensing with two-dimensional coupled photonic crystal microcavity arrays. , 2004, Optics letters.

[43]  P. Cremer,et al.  Label-free detection becomes crystal clear , 2004, Nature Biotechnology.

[44]  J. Homola Present and future of surface plasmon resonance biosensors , 2003, Analytical and bioanalytical chemistry.

[45]  Shanhui Fan,et al.  Analysis of guided resonances in photonic crystal slabs , 2002 .

[46]  Shanhui Fan,et al.  Sharp asymmetric line shapes in side-coupled waveguide-cavity systems , 2002 .

[47]  Steven G. Johnson,et al.  Guided modes in photonic crystal slabs , 1999 .

[48]  D. Whittaker,et al.  Scattering-matrix treatment of patterned multilayer photonic structures , 1999 .

[49]  Günter Gauglitz,et al.  Surface plasmon resonance sensors: review , 1999 .

[50]  Jiří Homola,et al.  Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison , 1999 .

[51]  David Erickson,et al.  Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale , 2008, Microfluidics and nanofluidics.