Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3

Metal/oxide interfaces are ubiquitous in a wide range of applications such as electronics, photovoltaics, memories, catalysis, and sensors. However, there have been few investigations dedicated to the nanoscale structural and chemical characteristics of these buried interfaces. In this work, the metal/oxide interface between Ti and SrTiO3 (STO) is examined as a prototypical system using high-resolution scanning transmission electron microscopy and electron energy loss spectroscopy. An atomic-thin Ti2O3-like layer at the Ti/STO interface prepared at room temperature is discovered, and first-principles calculations predict a metallic band structure of this 2D electron system. As a universal feature of such interfaces prepared at different temperatures, near the interface nanoscale oxygen-deficient domains and continuous modulation of Ti oxidation states are found. Overall, these results directly reveal complex chemical and valence evolutions at the metal/oxide interfaces, providing microscopic insights on such heterostructures.

[1]  Okada,et al.  Filling dependence of electronic properties on the verge of metal-Mott-insulator transition in Sr1-xLaxTiO3. , 1993, Physical review letters.

[2]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[3]  H. Nakatsugawa,et al.  Transition phenomenon in $Ti_2O_3$ using the discrete variational Xα cluster method and periodic shell model , 1997 .

[4]  P. Salvador,et al.  Epitaxial growth of Cu(100) and Pt(100) thin films on perovskite substrates , 2006 .

[5]  Lester F. Eastman,et al.  Ultra-low resistive ohmic contacts on n-GaN using Si implantation , 1997 .

[6]  B. Meyer,et al.  Schottky barriers at transition-metal/ SrTiO 3 ( 001 ) interfaces , 2009 .

[7]  D. Cha,et al.  Effects of electrode material and configuration on the characteristics of planar resistive switching devices , 2013 .

[8]  J. H. Becker,et al.  Dependence of the Superconducting Transition Temperature on Carrier Concentration in Semiconducting SrTi O 3 , 1965 .

[9]  Qiang Fu,et al.  Interaction of nanostructured metal overlayers with oxide surfaces , 2007 .

[10]  Akira Ohtomo,et al.  Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3 , 2004, Nature.

[11]  M. Takano,et al.  Structural Characterization of Ar+-Irradiated SrTiO3 Showing Room-Temperature Blue Luminescence , 2007 .

[12]  P. Shen,et al.  Nonstoichiometric Titanium Oxides via Pulsed Laser Ablation in Water , 2010, Nanoscale research letters.

[13]  Thomas N. Jackson,et al.  Investigation of the mechanism for Ohmic contact formation in Al and Ti/Al contacts to n-type GaN , 1997 .

[14]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[15]  A. Kucernak,et al.  Comment on "2D atomic mapping of oxidation states in transition metal oxides by scanning transmission electron microscopy and electron energy-loss spectroscopy". , 2011, Physical review letters.

[16]  R. F. Karlicek,et al.  Analysis of a thin AlN interfacial layer in Ti/Al and Pd/Al ohmic contacts to n-type GaN , 1997 .

[17]  N. Pryds,et al.  Imposed quasi-layer-by-layer homoepitaxial growth of SrTiO3 films by large area pulsed laser deposition , 2011 .

[18]  K. Jin,et al.  Ultraviolet fast-response photoelectric effect in tilted orientation SrTiO3 single crystals , 2006 .

[19]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[20]  Y. Shimakawa,et al.  Blue luminescence from electron-doped SrTiO3 , 2006 .

[21]  M. Takano,et al.  Blue-light emission at room temperature from Ar+-irradiated SrTiO3 , 2005 .

[22]  H. Morkoç,et al.  Very low resistance multilayer Ohmic contact to n‐GaN , 1996 .

[23]  J. Kortus,et al.  Formation of Schottky-type metal/SrTiO3 junctions and their resistive properties , 2010 .

[24]  S. Chambers,et al.  Unintentional F doping of SrTiO3(001) etched in HF acid-structure and electronic properties , 2011, 1110.4061.

[25]  J. Noh,et al.  Synthesis and photoactivity of hetero-nanostructured SrTiO3 , 2010 .

[26]  Theodore D. Moustakas,et al.  Metal contacts to gallium nitride , 1993 .

[27]  C. W. Chen,et al.  Schottky barrier heights of tantalum oxide, barium strontium titanate, lead titanate, and strontium bismuth tantalate , 1999 .

[28]  Ming L. Yu,et al.  Chemical enhancement effects in SIMS analysis , 1986 .

[29]  H. B. Lu,et al.  Ultraviolet photoresponse properties of SrTiO3 single crystals , 2007 .

[30]  S. Nakamura,et al.  InGaN-Based Multi-Quantum-Well-Structure Laser Diodes , 1996 .

[31]  K. Jin,et al.  Self-powered ultraviolet photovoltaic effects based on metal/SrTiO3 Schottky junctions , 2013 .

[32]  Ho Won Jang,et al.  Metallic and Insulating Oxide Interfaces Controlled by Electronic Correlations , 2011, Science.

[33]  T. Merz,et al.  Depth-resolved subsurface defects in chemically etched SrTiO3 , 2009, 0903.1853.

[34]  Akira Ohtomo,et al.  Artificial charge-modulationin atomic-scale perovskite titanate superlattices , 2002, Nature.

[35]  Masahiko Sano,et al.  InGaN/GaN/AlGaN-Based Laser Diodes with Modulation-Doped Strained-Layer Superlattices , 1997 .

[36]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[37]  N. Browning,et al.  Ultralow Contact Resistance at an Epitaxial Metal/Oxide Heterojunction Through Interstitial Site Doping , 2013, Advanced materials.

[38]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.