Ultrahigh-resolution OCT using white-light interference microscopy

We report on ultrahigh-resolution Optical Coherence Tomography (OCT) using white-light interference microscopy. The experimental setup is based on a Linnik interferometer illuminated by a tungsten halogen lamp. Tomographic images in the en face orientation are calculated by combination of images recorded by a silicon CCD camera. Axial resolution of 0.8 μm is achieved due to the short coherence length of the source and the compensation of dispersion mismatch in the interferometer arms. Transverse resolution of 1.6 μm is obtained by using relatively high numerical aperture microscope objectives. A nearly shot-noise limited detection sensitivity of 90 dB is achieved with 4s acquisition time. Images of the Xenopus Laevis tadpole are presented.

[1]  Brett E. Bouma,et al.  Optical Coherence Tomographic Imaging of In Vivo Cellular Dynamics , 1998 .

[2]  B E Bouma,et al.  Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography. , 1996, Optics letters.

[3]  J. Fujimoto,et al.  Determination of the refractive index of highly scattering human tissue by optical coherence tomography. , 1995, Optics letters.

[4]  J G Fujimoto,et al.  High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al(2)O(3) laser source. , 1995, Optics letters.

[5]  A. Dubois,et al.  Phase-map measurements by interferometry with sinusoidal phase modulation and four integrating buckets. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[6]  J. Schmitt,et al.  Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering. , 1994, Physics in medicine and biology.

[7]  S L Jacques,et al.  Optical properties of rat liver between 350 and 2200 nm. , 1989, Applied optics.

[8]  A. Boccara,et al.  High-resolution full-field optical coherence tomography with a Linnik microscope. , 2002, Applied optics.

[9]  H Saint-Jalmes,et al.  Full-field optical coherence microscopy. , 1998, Optics letters.

[10]  J. Fujimoto,et al.  Optical biopsy and imaging using optical coherence tomography , 1995, Nature Medicine.

[11]  G. Gelikonov,et al.  Endoscopic applications of optical coherence tomography. , 1998, Optics express.

[12]  Antonello De Martino,et al.  Full-field optical coherence tomography with thermal light. , 2002, Applied optics.

[13]  J. Fujimoto,et al.  Optical biopsy in human urologic tissue using optical coherence tomography. , 1997, The Journal of urology.

[14]  G. Ripandelli,et al.  Optical coherence tomography. , 1998, Seminars in ophthalmology.

[15]  R Birngruber,et al.  Optical coherence tomography of the human skin. , 1997, Journal of the American Academy of Dermatology.

[16]  Joseph M. Schmitt,et al.  MODEL OF OPTICAL COHERENCE TOMOGRAPHY OF HETEROGENEOUS TISSUE , 1997 .

[17]  Harald Sattmann,et al.  A thermal light source technique for optical coherence tomography , 2000 .

[18]  C K Hitzenberger,et al.  Dispersion effects in partial coherence interferometry: implications for intraocular ranging. , 1999, Journal of biomedical optics.

[19]  J. Fujimoto,et al.  In vivo endoscopic optical biopsy with optical coherence tomography. , 1997, Science.

[20]  A. Boccara,et al.  Thermal-light full-field optical coherence tomography. , 2002, Optics letters.

[21]  S A Boppart,et al.  High-resolution imaging of gynecologic neoplasms using optical coherence tomography. , 1999, Obstetrics and gynecology.

[22]  J. Fujimoto,et al.  Optical coherence microscopy in scattering media. , 1994, Optics letters.

[23]  J. Fujimoto,et al.  In vivo retinal imaging by optical coherence tomography. , 1993, Optics letters.

[24]  J. Fujimoto,et al.  In vivo ultrahigh-resolution optical coherence tomography. , 1999, Optics letters.

[25]  Reginald Birngruber,et al.  Optical Coherence Tomography in the Anterior Segment of the Eye Hans Hoerauf and Reginald Birngruber , 2001 .

[26]  David A. Jackson,et al.  En-face coherence imaging using galvanometer scanner modulation. , 1998, Optics letters.

[27]  J. Izatt,et al.  Real-time in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design. , 1999, Optics letters.