A Stay-in-a-Set Game without a Stationary Equilibrium

We give an example of a finite-state two-player turn-based stochastic game with safety objectives for both players which has no stationary Nash equilibrium. This answers an open question of Secchi and Sudderth.

[1]  Piercesare Secchi,et al.  Stay-in-a-set games , 2002, Int. J. Game Theory.

[2]  Dominik Wojtczak,et al.  The Complexity of Nash Equilibria in Limit-Average Games , 2011, CONCUR.

[3]  Robert Samuel Simon Value and perfection in stochastic games , 2006 .

[4]  János Flesch,et al.  Recursive Repeated Games with Absorbing States , 1996, Math. Oper. Res..

[5]  Donald A. Martin,et al.  The determinacy of Blackwell games , 1998, Journal of Symbolic Logic.

[6]  Dean Gillette,et al.  9. STOCHASTIC GAMES WITH ZERO STOP PROBABILITIES , 1958 .

[7]  A. M. Fink,et al.  Equilibrium in a stochastic $n$-person game , 1964 .

[8]  Nicolas Vieille,et al.  Two-player stochastic games II: The case of recursive games , 2000 .

[9]  H. Everett 2. RECURSIVE GAMES , 1958 .

[10]  Microeconomics-Charles W. Upton Repeated games , 2020, Game Theory.

[11]  János Flesch,et al.  Pure subgame-perfect equilibria in free transition games , 2009, Eur. J. Oper. Res..

[12]  N. Vieille Two-player stochastic games I: A reduction , 2000 .

[13]  William D. Sudderth,et al.  Finitely additive stochastic games with Borel measurable payoffs , 1998, Int. J. Game Theory.

[14]  Krishnendu Chatterjee,et al.  A survey of stochastic ω-regular games , 2012, J. Comput. Syst. Sci..

[15]  Masayuki Takahashi Equilibrium points of stochastic non-cooperative $n$-person games , 1964 .

[16]  Vladimir Gurvich,et al.  A three-person deterministic graphical game without Nash equilibria , 2016, Discret. Appl. Math..

[17]  Vladimir Gurvich,et al.  On Nash-solvability in pure stationary strategies of finite games with perfect information which may have cycles , 2003, Math. Soc. Sci..

[18]  A. Neyman,et al.  Stochastic games , 1981 .

[19]  Patricia Bouyer,et al.  Mixed Nash Equilibria in Concurrent Terminal-Reward Games , 2014, FSTTCS.

[20]  A Tarlecki,et al.  On Nash equilibria in stochastic games , 2004 .