Network calisthenics

Stimulation of quiescent mammalian cells with mitogens induces an abrupt increase in E2F1–3 expression just prior to the onset of DNA synthesis, followed by a rapid decline as replication ceases. This temporal adaptation in E2F facilitates a transient pattern of gene expression that reflects the ordered nature of DNA replication. The challenge to understand how E2F dynamics coordinate molecular events required for high-fidelity DNA replication has great biological implications. Indeed, precocious, prolonged, elevated or reduced accumulation of E2F can generate replication stress that culminates in either arrest or death. Accordingly, temporal characteristics of E2F are regulated by several network modules that include feedforward and autoregulatory loops. In this review, we discuss how these network modules contribute to “shaping” E2F dynamics in the context of mammalian cell cycle entry.

[1]  H. Saavedra,et al.  Control of the p53-p21CIP1 Axis by E2f1, E2f2, and E2f3 Is Essential for G1/S Progression and Cellular Transformation* , 2006, Journal of Biological Chemistry.

[2]  J. Ferrell Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. , 2002, Current opinion in cell biology.

[3]  D. Haines,et al.  SKP2 associates with p130 and accelerates p130 ubiquitylation and degradation in human cells , 2003, Oncogene.

[4]  J. Sage,et al.  Cellular mechanisms of tumour suppression by the retinoblastoma gene , 2008, Nature Reviews Cancer.

[5]  J. A. Smith,et al.  Mammalian cell cycles need two random transitions , 1980, Cell.

[6]  R. Weinberg,et al.  Regulation of retinoblastoma protein functions by ectopic expression of human cyclins , 1992, Cell.

[7]  A. Schulze,et al.  Cell cycle regulation of the cyclin A gene promoter is mediated by a variant E2F site. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[8]  W. Gu,et al.  Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage , 2006, Nature Cell Biology.

[9]  A. Datta,et al.  ARF Directly Binds DP1: Interaction with DP1 Coincides with the G1 Arrest Function of ARF , 2005, Molecular and Cellular Biology.

[10]  W. Lee,et al.  Deregulated expression of E2F-1 induces S-phase entry and leads to apoptosis , 1994, Molecular and cellular biology.

[11]  J. Nevins,et al.  Identification of positively and negatively acting elements regulating expression of the E2F2 gene in response to cell growth signals , 1997, Molecular and cellular biology.

[12]  Rosalie C Sears,et al.  Signaling Networks That Link Cell Proliferation and Cell Fate* , 2002, The Journal of Biological Chemistry.

[13]  James E Ferrell,et al.  Signaling motifs and Weber's law. , 2009, Molecular cell.

[14]  J. Nevins,et al.  E2F3 activity is regulated during the cell cycle and is required for the induction of S phase. , 1998, Genes & development.

[15]  Joshua J. Forman,et al.  “Myc’ed Messages”: Myc Induces Transcription of E2F1 while Inhibiting Its Translation via a microRNA Polycistron , 2007, PLoS genetics.

[16]  N. Dyson,et al.  pRB and p107/p130 are required for the regulated expression of different sets of E2F responsive genes. , 1997, Genes & development.

[17]  Joseph B. Rayman,et al.  Analysis of promoter binding by the E2F and pRB families in vivo: distinct E2F proteins mediate activation and repression. , 2000, Genes & development.

[18]  A. Schulze,et al.  Sequential activation of cyclin E and cyclin A gene expression by human papillomavirus type 16 E7 through sequences necessary for transformation , 1995, Journal of virology.

[19]  J. Trent,et al.  WAF1, a potential mediator of p53 tumor suppression , 1993, Cell.

[20]  Vincent De Guire,et al.  An E2F/miR-20a Autoregulatory Feedback Loop* , 2007, Journal of Biological Chemistry.

[21]  J. Diffley,et al.  CDKs Promote DNA Replication Origin Licensing in Human Cells by Protecting Cdc6 from APC/C-Dependent Proteolysis , 2005, Cell.

[22]  J. Julian Blow,et al.  Preventing re-replication of chromosomal DNA , 2005, Nature Reviews Molecular Cell Biology.

[23]  C. Wang,et al.  F-box protein Skp2: a novel transcriptional target of E2F , 2006, Oncogene.

[24]  C. Sherr Divorcing ARF and p53: an unsettled case , 2006, Nature Reviews Cancer.

[25]  B. Kerem,et al.  Nucleotide Deficiency Promotes Genomic Instability in Early Stages of Cancer Development , 2011, Cell.

[26]  Alain de Bruin,et al.  Mouse development with a single E2F activator , 2008, Nature.

[27]  Nidhi Sharma,et al.  E2f3a and E2f3b Contribute to the Control of Cell Proliferation and Mouse Development , 2008, Molecular and Cellular Biology.

[28]  J. Nevins,et al.  Complex Transcriptional Regulatory Mechanisms Control Expression of the E2F3 Locus , 2000, Molecular and Cellular Biology.

[29]  J. Nevins,et al.  Identification of a Novel E2F3 Product Suggests a Mechanism for Determining Specificity of Repression by Rb Proteins , 2000, Molecular and Cellular Biology.

[30]  J. Nevins,et al.  E2F1 overexpression in quiescent fibroblasts leads to induction of cellular DNA synthesis and apoptosis , 1995, Journal of virology.

[31]  W. D. Cress,et al.  E2F1 induces MRN foci formation and a cell cycle checkpoint response in human fibroblasts , 2006, Oncogene.

[32]  K. Moberg,et al.  E2F activity is regulated by cell cycle-dependent changes in subcellular localization , 1997, Molecular and cellular biology.

[33]  Y Taya,et al.  Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. , 2000, Genes & development.

[34]  Brian David Dynlacht,et al.  E2F mediates cell cycle-dependent transcriptional repression in vivo by recruitment of an HDAC1/mSin3B corepressor complex. , 2002, Genes & development.

[35]  J. Nevins,et al.  Compensation and specificity of function within the E2F family , 2007, Oncogene.

[36]  J. Nevins,et al.  The accumulation of an E2F-p130 transcriptional repressor distinguishes a G0 cell state from a G1 cell state , 1996, Molecular and cellular biology.

[37]  M. Lindström,et al.  Myc and E2F1 induce p53 through p14ARF-independent mechanisms in human fibroblasts , 2003, Oncogene.

[38]  Joseph B. Rayman,et al.  E 2 F mediates cell cycle-dependent transcriptional repression in vivo by recruitment of an HDAC 1 / mSin 3 B corepressor complex , 2002 .

[39]  A. Gartel,et al.  Myc-ARF (Alternate Reading Frame) Interaction Inhibits the Functions of Myc* , 2004, Journal of Biological Chemistry.

[40]  G. Leone,et al.  Division and apoptosis of E2f-deficient retinal progenitors , 2009, Nature.

[41]  Kathryn A. O’Donnell,et al.  c-Myc-regulated microRNAs modulate E2F1 expression , 2005, Nature.

[42]  A. Pardee,et al.  A restriction point for control of normal animal cell proliferation. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[43]  W. Reith,et al.  Cyclin E2: a novel CDK2 partner in the late G1 and S phases of the mammalian cell cycle , 1998, Oncogene.

[44]  S. Mangan,et al.  Structure and function of the feed-forward loop network motif , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[45]  U Alon,et al.  The incoherent feed-forward loop accelerates the response-time of the gal system of Escherichia coli. , 2006, Journal of molecular biology.

[46]  J. Harbour,et al.  The Rb/E2F pathway: expanding roles and emerging paradigms. , 2000, Genes & development.

[47]  S. Reed,et al.  Association of human cyclin E with a periodic G1-S phase protein kinase. , 1992, Science.

[48]  Avner Friedman,et al.  MicroRNA regulation of a cancer network: Consequences of the feedback loops involving miR-17-92, E2F, and Myc , 2008, Proceedings of the National Academy of Sciences.

[49]  Duanduan Ma,et al.  Exit from G1 and S Phase of the Cell Cycle Is Regulated by Repressor Complexes Containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF , 2000, Cell.

[50]  C. Dang,et al.  Induction of ribosomal genes and hepatocyte hypertrophy by adenovirus-mediated expression of c-Myc in vivo. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[51]  N. Mailand,et al.  Involvement of Myc Activity in a G1/S-Promoting Mechanism Parallel to the pRb/E2F Pathway , 2000, Molecular and Cellular Biology.

[52]  M. Ikeda,et al.  Distinct recruitment of E2F family members to specific E2F-binding sites mediates activation and repression of the E2F1 promoter , 2003, Oncogene.

[53]  J. M. Thomson,et al.  Direct Regulation of an Oncogenic Micro-RNA Cluster by E2F Transcription Factors* , 2007, Journal of Biological Chemistry.

[54]  J. Nevins,et al.  Regulation of the cyclin E gene by transcription factor E2F1. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[55]  David M. Livingston,et al.  p19ARF targets certain E2F species for degradation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[56]  A. de Bruin,et al.  Identification and Characterization of E2F7, a Novel Mammalian E2F Family Member Capable of Blocking Cellular Proliferation* , 2003, Journal of Biological Chemistry.

[57]  Amit Kumar,et al.  Phosphoinositide 3-Kinase Activation in Late G1 Is Required for c-Myc Stabilization and S Phase Entry , 2006, Molecular and Cellular Biology.

[58]  Yan Geng,et al.  Cyclin E Ablation in the Mouse , 2003, Cell.

[59]  Jehoshua Bruck,et al.  Regulatory modules that generate biphasic signal response in biological systems. , 2004, Systems biology.

[60]  M. Malumbres,et al.  MicroRNAs and the cell cycle. , 2011, Biochimica et biophysica acta.

[61]  Y. Xiong,et al.  Phosphorylation- and Skp1-independent in vitro ubiquitination of E2F1 by multiple ROC-cullin ligases. , 2001, Cancer research.

[62]  J. Pipas,et al.  E2F1-3 Switch from Activators in Progenitor Cells to Repressors in Differentiating Cells , 2009, Nature.

[63]  M. Pickering,et al.  miR-17 and miR-20a temper an E2F1-induced G1 checkpoint to regulate cell cycle progression , 2009, Oncogene.

[64]  Nedra Rogers,et al.  Mammalian , 2007 .

[65]  James M. Roberts,et al.  Formation and activation of a cyclin E-cdk2 complex during the G1 phase of the human cell cycle , 1992 .

[66]  B. Henglein,et al.  Cell cycle regulation of the cyclin A gene promoter is mediated by a variant E 2 F site , 2022 .

[67]  Wilhelm Krek,et al.  Negative regulation of the growth-promoting transcription factor E2F-1 by a stably bound cyclin A-dependent protein kinase , 1994, Cell.

[68]  D. Livingston,et al.  Cyclin A-kinase regulation of E2F-1 DNA binding function underlies suppression of an S phase checkpoint , 1995, Cell.

[69]  A. de Bruin,et al.  Synergistic function of E2F7 and E2F8 is essential for cell survival and embryonic development. , 2008, Developmental cell.

[70]  J. Nevins,et al.  A role for Myc in facilitating transcription activation by E2F1 , 2008, Oncogene.

[71]  R. Weinmann,et al.  The retinoblastoma protein copurifies with E2F-I, an E1A-regulated inhibitor of the transcription factor E2F , 1991, Cell.

[72]  Guang Yao,et al.  Sensing and Integration of Erk and PI3K Signals by Myc , 2008, PLoS Comput. Biol..

[73]  Jeffrey M. Trimarchi,et al.  Transcription: Sibling rivalry in the E2F family , 2002, Nature Reviews Molecular Cell Biology.

[74]  H. Komori,et al.  Distinct E 2 F-mediated transcriptional program regulates p 14 ARF gene expression , 2013 .

[75]  U. Hansen,et al.  Transcription factors LSF and E2Fs: Tandem cyclists driving G0 to S? , 2009, Cell cycle.

[76]  M. West,et al.  Origin of bistability underlying mammalian cell cycle entry , 2011, Molecular systems biology.

[77]  D. Cobrinik Pocket proteins and cell cycle control , 2005, Oncogene.

[78]  M. Pagano,et al.  Modulation of cyclin gene expression by adenovirus E1A in a cell line with E1A-dependent conditional proliferation , 1994, Journal of virology.

[79]  J. Nevins,et al.  A role for the adenovirus inducible E2F transcription factor in a proliferation dependent signal transduction pathway. , 1990, The EMBO journal.

[80]  Jeff Hasty,et al.  Coherent activation of a synthetic mammalian gene network , 2009, Systems and Synthetic Biology.

[81]  A. de Bruin,et al.  Cloning and Characterization of Mouse E2F8, a Novel Mammalian E2F Family Member Capable of Blocking Cellular Proliferation* , 2005, Journal of Biological Chemistry.

[82]  C. Peng,et al.  Cyclin A/CDK2 binds directly to E2F-1 and inhibits the DNA-binding activity of E2F-1/DP-1 by phosphorylation , 1994, Molecular and cellular biology.

[83]  J. Ferrell,et al.  Modeling the Cell Cycle: Why Do Certain Circuits Oscillate? , 2011, Cell.

[84]  M. Pickering,et al.  Rb inactivation leads to E2F1-mediated DNA double-strand break accumulation , 2006, Oncogene.

[85]  James M. Roberts,et al.  Kinase-independent function of cyclin E. , 2007, Molecular cell.

[86]  David G Johnson,et al.  Distinct and Overlapping Roles for E2F Family Members in Transcription, Proliferation and Apoptosis. , 2006, Current molecular medicine.

[87]  Uri Alon,et al.  The incoherent feed-forward loop can generate non-monotonic input functions for genes , 2008, Molecular systems biology.

[88]  K. Helin,et al.  The E2F family: specific functions and overlapping interests , 2004, The EMBO journal.

[89]  W. Kaelin,et al.  Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[90]  Kwang-Hyun Cho,et al.  The biphasic behavior of incoherent feed-forward loops in biomolecular regulatory networks. , 2008, BioEssays : news and reviews in molecular, cellular and developmental biology.

[91]  H. Komori,et al.  Distinct E2F‐mediated transcriptional program regulates p14ARF gene expression , 2005, The EMBO journal.

[92]  M Lipp,et al.  Nuclear factor E2F mediates basic transcription and trans-activation by E1a of the human MYC promoter. , 1989, Genes & development.

[93]  E. Harlow,et al.  The retinoblastoma protein is phosphorylated during specific phases of the cell cycle , 1989, Cell.

[94]  E. Brambilla,et al.  Human ARF binds E2F1 and inhibits its transcriptional activity , 2001, Oncogene.

[95]  Benjamin L Turner,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to S3 Table S1 References Robust, Tunable Biological Oscillations from Interlinked Positive and Negative Feedback Loops , 2022 .

[96]  Robert A. Weinberg,et al.  Functional Inactivation of the Retinoblastoma Protein Requires Sequential Modification by at Least Two Distinct Cyclin-cdk Complexes , 1998, Molecular and Cellular Biology.

[97]  Marco Foiani,et al.  Maintaining genome stability at the replication fork , 2010, Nature Reviews Molecular Cell Biology.

[98]  S. Weintraub,et al.  Retinoblastoma protein switches the E2F site from positive to negative element , 1992, Nature.

[99]  J. Ferrell,et al.  Interlinked Fast and Slow Positive Feedback Loops Drive Reliable Cell Decisions , 2005, Science.

[100]  Joseph R. Nevins,et al.  The E2F transcription factor is a cellular target for the RB protein , 1991, Cell.

[101]  J. Nevins,et al.  Expression of transcription factor E2F1 induces quiescent cells to enter S phase , 1993, Nature.

[102]  B. Pützer,et al.  Checks and balances: E2F—microRNA crosstalk in cancer control , 2010, Cell cycle.

[103]  E. Flemington,et al.  Regulation of E2F through ubiquitin-proteasome-dependent degradation: stabilization by the pRB tumor suppressor protein. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[104]  Joseph R. Nevins,et al.  Myc and Ras collaborate in inducing accumulation of active cyclin E/Cdk2 and E2F , 1997, Nature.

[105]  D. Livingston,et al.  The retinoblastoma gene product protects E2F-1 from degradation by the ubiquitin-proteasome pathway. , 1996, Genes & development.

[106]  R. Weinberg,et al.  Altered cell cycle kinetics, gene expression, and G1 restriction point regulation in Rb-deficient fibroblasts , 1996, Molecular and cellular biology.

[107]  LaRoy N. Castor,et al.  A G1 rate model accounts for cell-cycle kinetics attributed to ‘transition probability’ , 1980, Nature.

[108]  R. Laskey,et al.  Distinct roles for cyclins E and A during DNA replication complex assembly and activation , 2002, Nature Cell Biology.

[109]  U. Alon,et al.  Negative autoregulation speeds the response times of transcription networks. , 2002, Journal of molecular biology.

[110]  Anindya Dutta,et al.  A p53-dependent checkpoint pathway prevents rereplication. , 2003, Molecular cell.

[111]  Lingchong You,et al.  Viral-mediated noisy gene expression reveals biphasic E2f1 response to MYC. , 2011, Molecular cell.

[112]  Michele Pagano,et al.  Control of the SCFSkp2–Cks1 ubiquitin ligase by the APC/CCdh1 ubiquitin ligase , 2004, Nature.

[113]  T. Jacks,et al.  Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry , 2003, Nature.

[114]  J. Walter,et al.  Strength in numbers: preventing rereplication via multiple mechanisms in eukaryotic cells. , 2007, Genes & development.

[115]  K. Hunt,et al.  Absence of pRb facilitates E2F1-induced apoptosis in breast cancer cells , 2010, Cell cycle.

[116]  Kiyoshi,et al.  Autoregulatory control of E 2 F 1 expression in response to positive and negative regulators of cell cycle progression , 2007 .

[117]  G. Balázsi,et al.  Negative autoregulation linearizes the dose–response and suppresses the heterogeneity of gene expression , 2009, Proceedings of the National Academy of Sciences.

[118]  W. Lim,et al.  Defining Network Topologies that Can Achieve Biochemical Adaptation , 2009, Cell.

[119]  N. L. Thangue,et al.  p14ARF regulates E2F activity , 2002, Oncogene.

[120]  N. Dyson,et al.  E2F7 and E2F8 keep the E2F family in balance. , 2008, Developmental cell.

[121]  J. Nevins,et al.  The Rb/E2F pathway and cancer. , 2001, Human molecular genetics.

[122]  E. Barillot,et al.  A comprehensive modular map of molecular interactions in RB/E2F pathway , 2008, Molecular systems biology.

[123]  J. Nevins,et al.  Autoregulatory control of E2F1 expression in response to positive and negative regulators of cell cycle progression. , 1994, Genes & development.

[124]  M. Scheffner,et al.  Interaction between ubiquitin–protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-1 degradation , 1999, Nature Cell Biology.

[125]  E2f1, E2f2, and E2f3 Control E2F Target Expression and Cellular Proliferation via a p53-Dependent Negative Feedback Loop , 2012, Molecular and Cellular Biology.

[126]  Tae J. Lee,et al.  A bistable Rb–E2F switch underlies the restriction point , 2008, Nature Cell Biology.

[127]  R. Kobayashi,et al.  pl9 skp1 and p45 skp2 are essential elements of the cyclin A-CDK2 S phase kinase , 1995, Cell.

[128]  Anne Fernandez,et al.  Cyclin a is required for the onset of DNA replication in mammalian fibroblasts , 1991, Cell.

[129]  S. Reed,et al.  Deregulated cyclin E induces chromosome instability , 1999, Nature.

[130]  S. Reed,et al.  The pRb-related protein p130 is regulated by phosphorylation-dependent proteolysis via the protein-ubiquitin ligase SCF(Skp2). , 2002, Genes & development.

[131]  Jiri Bartek,et al.  An Oncogene-Induced DNA Damage Model for Cancer Development , 2008, Science.

[132]  M. Malumbres,et al.  Multiple E2F-Induced MicroRNAs Prevent Replicative Stress in Response to Mitogenic Signaling , 2010, Molecular and Cellular Biology.

[133]  Joseph R. Nevins,et al.  Stochastic E2F Activation and Reconciliation of Phenomenological Cell-Cycle Models , 2010, PLoS biology.

[134]  M Lipp,et al.  E1A-dependent trans-activation of the human MYC promoter is mediated by the E2F factor. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[135]  M. Willingham,et al.  Expression of Dmp1 in specific differentiated, nonproliferating cells and its regulation by E2Fs , 2006, Oncogene.

[136]  A. Datta,et al.  Differential Regulation of E2F1, DP1, and the E2F1/DP1 Complex by ARF , 2002, Molecular and Cellular Biology.