Trustworthy Genetic Programming-Based Synthesis of Analog Circuit Topologies Using Hierarchical Domain-Specific Building Blocks

This paper presents MOJITO, a system that performs structural synthesis of analog circuits, returning designs that are trustworthy by construction. The search space is defined by a set of expert-specified, trusted, hierarchically-organized analog building blocks, which are organized as a parameterized context-free grammar. The search algorithm is a multiobjective evolutionary algorithm that uses an age-layered population structure to balance exploration versus exploitation. It is validated with experiments to search across >;100 000 different one-stage and two-stage opamp topologies, returning human-competitive results. The runtime is orders of magnitude faster than open-ended systems, and unlike the other evolutionary algorithm approaches, the resulting circuits are trustworthy by construction. The approach generalizes to other problem domains which have accumulated structural domain knowledge, such as robotic structures, car assemblies, and modeling biological systems.

[1]  Michiel Steyaert,et al.  Massively multi-topology sizing of analog integrated circuits , 2009, 2009 Design, Automation & Test in Europe Conference & Exhibition.

[2]  Georges G. E. Gielen,et al.  Top-Down Heterogeneous Synthesis of Analog and Mixed-Signal Systems , 2006, Proceedings of the Design Automation & Test in Europe Conference.

[3]  Jianjun Hu,et al.  The Hierarchical Fair Competition (HFC) Framework for Sustainable Evolutionary Algorithms , 2005, Evolutionary Computation.

[4]  Tatiana Kalganova,et al.  Unconstrained Evolution of Analogue Computational "QR" Circuit with Oscillating Length Representation , 2008, ICES.

[5]  Jason D. Lohn,et al.  Automated Analog Circuit Sythesis Using a Linear Representation , 1998, ICES.

[6]  Samir W. Mahfoud Crowding and Preselection Revisited , 1992, PPSN.

[7]  Franz Rothlauf,et al.  Representations for genetic and evolutionary algorithms , 2002, Studies in Fuzziness and Soft Computing.

[8]  D. J. Cavicchio,et al.  Adaptive search using simulated evolution , 1970 .

[9]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 2000, Springer Berlin Heidelberg.

[10]  P. P. Chakrabarti,et al.  A synthesis system for analog circuits based on evolutionary search and topological reuse , 2005, IEEE Transactions on Evolutionary Computation.

[11]  P.R. Gray,et al.  OPASYN: a compiler for CMOS operational amplifiers , 1990, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[12]  Hitoshi Iba,et al.  Random Tree Generation for Genetic Programming , 1996, PPSN.

[13]  Ken Kundert,et al.  The designer's guide to Verilog-AMS , 2004 .

[14]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[15]  Domine Leenaerts,et al.  DARWIN: CMOS opamp Synthesis by Means of a Genetic Algorithm , 1995, 32nd Design Automation Conference.

[16]  Dario Floreano,et al.  Analog Genetic Encoding for the Evolution of Circuits and Networks , 2007, IEEE Transactions on Evolutionary Computation.

[17]  Rob A. Rutenbar,et al.  OASYS: a framework for analog circuit synthesis , 1989, Proceedings., Second Annual IEEE ASIC Seminar and Exhibit,.

[18]  Rob A. Rutenbar,et al.  Computer-Aided Design of Analog Integrated Circuits and Systems , 2002 .

[19]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[20]  W. Sansen Challenges in analog IC design submicron CMOS technologies , 1996, 1996 IEEE-CAS Region 8 Workshop on Analog and Mixed IC Design. Proceedings.

[21]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[22]  Yun Li,et al.  GA automated design and synthesis of analog circuits with practical constraints , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[23]  Mark Kotanchek,et al.  Pareto-Front Exploitation in Symbolic Regression , 2005 .

[24]  Rob A. Rutenbar,et al.  Integer programming based topology selection of cell-level analog circuits , 1995, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[25]  Peter A. Whigham,et al.  Grammatically-based Genetic Programming , 1995 .

[26]  John R. Koza,et al.  Automated synthesis of analog electrical circuits by means of genetic programming , 1997, IEEE Trans. Evol. Comput..

[27]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[28]  Christofer Toumazou,et al.  The invention of CMOS amplifiers using genetic programming and current-flow analysis , 2002, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[29]  Kurt Antreich,et al.  The sizing rules method for analog integrated circuit design , 2001, IEEE/ACM International Conference on Computer Aided Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers (Cat. No.01CH37281).

[30]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[31]  Nobuo Fujii,et al.  Automated design of analog circuits using cell-based structure , 2002, Proceedings 2002 NASA/DoD Conference on Evolvable Hardware.

[32]  DebK.,et al.  A fast and elitist multiobjective genetic algorithm , 2002 .

[33]  Nikolaus Hansen,et al.  A restart CMA evolution strategy with increasing population size , 2005, 2005 IEEE Congress on Evolutionary Computation.

[34]  David E. Goldberg,et al.  The Design of Innovation: Lessons from and for Competent Genetic Algorithms , 2002 .

[35]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[36]  Alex Doboli,et al.  Exploration-based high-level synthesis of linear analog systems operating at low/medium frequencies , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[37]  John R. Koza,et al.  Genetic Programming IV: Routine Human-Competitive Machine Intelligence , 2003 .

[38]  Hitoshi Iba,et al.  Evolving analog circuits by variable length chromosomes , 2003 .

[39]  Peng Gao,et al.  ISCLEs: Importance Sampled Circuit Learning Ensembles for Trustworthy Analog Circuit Topology Synthesis , 2008, ICES.

[40]  Jianjun Hu,et al.  Robust and Efficient Genetic Algorithms with Hierarchical Niching and a Sustainable Evolutionary Computation Model , 2004, GECCO.

[41]  Georges G. E. Gielen,et al.  An efficient DC root solving algorithm with guaranteed convergence for analog integrated CMOS circuits , 1998, ICCAD.

[42]  Adrian Thompson,et al.  Evolving Electronic Robot Controller that Exploit Hardware Resources , 1995, ECAL.

[43]  Willy Sansen,et al.  analog design essentials , 2011 .

[44]  Ricardo Salem Zebulum,et al.  Evolutionary Electronics , 2001 .

[45]  Marley M. B. R. Vellasco,et al.  Variable Length Representation in Evolutionary Electronics , 2000, Evolutionary Computation.

[46]  Ranga Vemuri,et al.  Topology synthesis of analog circuits based on adaptively generated building blocks , 2008, 2008 45th ACM/IEEE Design Automation Conference.

[47]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[48]  Dr. Zbigniew Michalewicz,et al.  How to Solve It: Modern Heuristics , 2004 .

[49]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[50]  Brian A. A. Antao,et al.  ARCHGEN: Automated synthesis of analog systems , 1995, IEEE Trans. Very Large Scale Integr. Syst..

[51]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[52]  John R. Koza Genetic Programming III - Darwinian Invention and Problem Solving , 1999, Evolutionary Computation.

[53]  Vu Duong,et al.  Evolution of analog circuits on field programmable transistor arrays , 2000, Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware.

[54]  Michael O'Neill,et al.  Grammatical evolution - evolutionary automatic programming in an arbitrary language , 2003, Genetic programming.

[55]  P. Schuster,et al.  From sequences to shapes and back: a case study in RNA secondary structures , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[56]  Trent McConaghy,et al.  Genetic programming with reuse of known designs for industrially scalable, novel circuit design (Chapter 10) , 2007 .

[57]  Gregory Hornby,et al.  ALPS: the age-layered population structure for reducing the problem of premature convergence , 2006, GECCO.

[58]  Trent McConaghy,et al.  Genetic Programming in Industrial Analog CAD: Applications and Challenges , 2006 .

[59]  David W. Corne,et al.  Techniques for highly multiobjective optimisation: some nondominated points are better than others , 2007, GECCO '07.

[60]  J. B. Grimbleby,et al.  Automatic analogue circuit synthesis using genetic algorithms , 2000 .