Diversity in Inhibition

The seamless balance between inhibitory and excitatory nerve cells is necessary for the correct functioning of the brain. In a Perspective, [Miles][1] discusses a series of new findings ([ Martina et al. ][2]; [ Gupta et al .][3]) that enable inhibitory neurons to be classified into three groups and characterized according to their properties. [1]: http://www.sciencemag.org/cgi/content/full/287/5451/244 [2]: http://www.sciencemag.org/cgi/content/short/287/5451/295 [3]: http://www.sciencemag.org/cgi/content/short/287/5451/273

[1]  R. Wong,et al.  Synchronization of inhibitory neurones in the guinea‐pig hippocampus in vitro. , 1994, The Journal of physiology.

[2]  K. Toyama,et al.  Ablation of Cerebellar Golgi Cells Disrupts Synaptic Integration Involving GABA Inhibition and NMDA Receptor Activation in Motor Coordination , 1998, Cell.

[3]  P. Jonas,et al.  Distal initiation and active propagation of action potentials in interneuron dendrites. , 2000, Science.

[4]  K. Baimbridge,et al.  Calcium-binding proteins in the nervous system , 1992, Trends in Neurosciences.

[5]  Arnd Roth,et al.  Submillisecond AMPA Receptor-Mediated Signaling at a Principal Neuron–Interneuron Synapse , 1997, Neuron.

[6]  B. Connors,et al.  Two networks of electrically coupled inhibitory neurons in neocortex , 1999, Nature.

[7]  I. Módy,et al.  The absence of a major Ca2+ signaling pathway in GABAergic neurons of the hippocampus. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[8]  B. Sakmann,et al.  Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS , 1995, Neuron.

[9]  H. Markram,et al.  Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. , 2000, Science.

[10]  Chris J. McBain,et al.  Glutamatergic synapses onto hippocampal interneurons: precision timing without lasting plasticity , 1999, Trends in Neurosciences.

[11]  R. Miles,et al.  How Many Subtypes of Inhibitory Cells in the Hippocampus? , 1998, Neuron.

[12]  S. Hestrin,et al.  A network of fast-spiking cells in the neocortex connected by electrical synapses , 1999, Nature.

[13]  L. Acsády,et al.  Postsynaptic targets of somatostatin-immunoreactive interneurons in the rat hippocampus , 1999, Neuroscience.

[14]  M. C. Angulo,et al.  Subunit Composition, Kinetic, and Permeation Properties of AMPA Receptors in Single Neocortical Nonpyramidal Cells , 1997, The Journal of Neuroscience.

[15]  R. Traub,et al.  Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation , 1995, Nature.

[16]  L. Acsády,et al.  Serotonergic control of the hippocampus via local inhibitory interneurons. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Bert Sakmann,et al.  Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons , 1995, Neuron.

[18]  Hannah Monyer,et al.  Functional and Molecular Differences between Voltage-Gated K+ Channels of Fast-Spiking Interneurons and Pyramidal Neurons of Rat Hippocampus , 1998, The Journal of Neuroscience.

[19]  B. Rudy,et al.  Developmental expression and functional characterization of the potassium-channel subunit Kv3.1b in parvalbumin-containing interneurons of the rat hippocampus , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  J. Csicsvari,et al.  Reliability and State Dependence of Pyramidal Cell–Interneuron Synapses in the Hippocampus an Ensemble Approach in the Behaving Rat , 1998, Neuron.

[21]  Peter Somogyi,et al.  Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites , 1994, Nature.