Efficient steganalysis of images: learning is good for anticipation

This paper describes a Bayesian formalism for digital image steganalysis allowing the detection of stego images, the identification of the steganographic algorithm used, the estimation of message length and location, and anticipation in the case of embedding using an unknown steganographic algorithm. A Bayesian multinomial logistic regression based on a variational approximation is proposed. Detection, identification, and anticipation involve discriminative learning in feature space. Estimation requires the fusion of classifiers allowing discrimination between fully embedded and cover subimages of different sizes. The validation on JPEG images shows that the proposed scheme is effective and allows the anticipation of unknown steganographic algorithms.

[1]  Tomás Pevný,et al.  Novelty detection in blind steganalysis , 2008, MM&Sec '08.

[2]  Qingzhong Liu,et al.  An improved approach to steganalysis of JPEG images , 2010, Inf. Sci..

[3]  Jessica J. Fridrich,et al.  Quantitative steganalysis of digital images: estimating the secret message length , 2003, Multimedia Systems.

[4]  Nizar Bouguila,et al.  A Dirichlet Process Mixture of Generalized Dirichlet Distributions for Proportional Data Modeling , 2010, IEEE Transactions on Neural Networks.

[5]  Ernest Valveny,et al.  Optimal Classifier Fusion in a Non-Bayesian Probabilistic Framework , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  George W. Irwin,et al.  Probabilistic classification of acute myocardial infarction from multiple cardiac markers , 2008, Pattern Analysis and Applications.

[7]  Nasir D. Memon,et al.  Image Steganography and Steganalysis: Concepts and Practice , 2003, IWDW.

[8]  S. Hecht,et al.  THE VISUAL DISCRIMINATION OF INTENSITY AND THE WEBER-FECHNER LAW , 1924, The Journal of general physiology.

[9]  R. Gray,et al.  Calculation of polychotomous logistic regression parameters using individualized regressions , 1984 .

[10]  Michael I. Jordan,et al.  On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes , 2001, NIPS.

[11]  Gustavus J. Simmons,et al.  The Prisoners' Problem and the Subliminal Channel , 1983, CRYPTO.

[12]  Tomás Pevný,et al.  Multiclass Detector of Current Steganographic Methods for JPEG Format , 2008, IEEE Transactions on Information Forensics and Security.

[13]  Huaiqing Wang,et al.  Cyber warfare: steganography vs. steganalysis , 2004, CACM.

[14]  Lawrence Carin,et al.  Sparse multinomial logistic regression: fast algorithms and generalization bounds , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Eiji Kawaguchi,et al.  Principles and applications of BPCS steganography , 1999, Other Conferences.

[16]  Bernard Colin,et al.  Weighted Pseudometric Discriminatory Power Improvement Using a Bayesian Logistic Regression Model Based on a Variational Method , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  William A. Pearlman,et al.  Kernel Fisher discriminant for steganalysis of JPEG hiding methods , 2004, IS&T/SPIE Electronic Imaging.

[18]  Ioannis Mariolis,et al.  Automatic classification of seam pucker images based on ordinal quality grades , 2011, Pattern Analysis and Applications.

[19]  Nasir D. Memon,et al.  Image Steganalysis with Binary Similarity Measures , 2002, Proceedings. International Conference on Image Processing.

[20]  Niels Provos,et al.  Probabilistic Methods for Improving Information Hiding , 2001 .

[21]  N. D. Memon,et al.  Steganography capacity: a steganalysis perspective , 2003, IS&T/SPIE Electronic Imaging.

[22]  Andreas Westfeld F 5 — A Steganographic Algorithm High Capacity Despite Better , 2001 .

[23]  Andreas Pfitzmann,et al.  Attacks on Steganographic Systems , 1999, Information Hiding.

[24]  Hany Farid,et al.  Detecting hidden messages using higher-order statistical models , 2002, Proceedings. International Conference on Image Processing.

[25]  Frank Y. Shih,et al.  Image steganography and steganalysis , 2011 .

[26]  Andreas Westfeld,et al.  F5-A Steganographic Algorithm , 2001, Information Hiding.

[27]  Béla Julesz,et al.  Visual Pattern Discrimination , 1962, IRE Trans. Inf. Theory.

[28]  Andrew D. Ker Improved Detection of LSB Steganography in Grayscale Images , 2004, Information Hiding.

[29]  Yixian Yang,et al.  Analysis of Current Steganography Tools: Classifications & Features , 2006, 2006 International Conference on Intelligent Information Hiding and Multimedia.

[30]  Phil Sallee,et al.  Model-Based Steganography , 2003, IWDW.

[31]  Ying Wang,et al.  Optimized Feature Extraction for Learning-Based Image Steganalysis , 2007, IEEE Transactions on Information Forensics and Security.

[32]  Renata M. C. R. de Souza,et al.  Logistic regression-based pattern classifiers for symbolic interval data , 2011, Pattern Analysis and Applications.

[33]  Guo-Shiang Lin,et al.  A feature-based classification technique for blind image steganalysis , 2005, IEEE Transactions on Multimedia.

[34]  Asha Pathak,et al.  Image Steganography and Steganalysis : A Survey , 2014 .

[35]  Yun Q. Shi,et al.  JPEG Steganalysis Using Empirical Transition Matrix in Block DCT Domain , 2006, 2006 IEEE Workshop on Multimedia Signal Processing.