Tropospheric column amount of ozone retrieved from SCIAMACHY limb–nadir-matching observations

Abstract. Tropospheric ozone (O3), has two main sources: transport from the stratosphere and photochemical production in the troposphere. It plays important roles in atmospheric chemistry and climate change. Its amount and destruction are being modified by anthropogenic activity. Global measurements are needed to test our understanding of its sources and sinks. In this paper, we describe the retrieval of tropospheric O3 columns (TOCs) from the combined limb and nadir observations (hereinafter referred to as limb–nadir-matching (LNM)) of the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument, which flew as part of the payload onboard the European Space Agency (ESA) satellite Envisat (2002–2012). The LNM technique used in this study is a residual approach that subtracts stratospheric O3 columns (SOCs), retrieved from the limb observations, from the total O3 columns (TOZs), derived from the nadir observations. The technique requires accurate knowledge of the SOCs, TOZs, tropopause height, and their associated errors. The SOCs were determined from the stratospheric O3 profiles retrieved in the Hartley and Chappuis bands from SCIAMACHY limb scattering measurements. The TOZs were also derived from SCIAMACHY measurements, but in this case from the nadir viewing mode using the Weighting Function Differential Optical Absorption Spectroscopy (WFDOAS) technique in the Huggins band. Comparisons of the TOCs from SCIAMACHY and collocated measurements from ozonesondes in both hemispheres between January 2003 and December 2011 show agreement to within 2–5 DU (1 DU = 2.69 × 1016 molecules cm−2). TOC values from SCIAMACHY have also been compared to the results from the Tropospheric Emission Spectrometer (TES) and from the LNM technique exploiting Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) data (hereinafter referred to as OMI/MLS). All compared data sets agree within the given data product error range and exhibit similar seasonal variations, which, however, differ in amplitude. The spatial distributions of tropospheric O3 in the SCIAMACHY LNM TOC product show characteristic variations related to stratosphere–troposphere exchange (STE) processes, anthropogenic activities and biospheric emissions.

[1]  K. Bowman,et al.  Validation of northern latitude Tropospheric Emission Spectrometer stare ozone profiles with ARC-IONS sondes during ARCTAS: sensitivity, bias and error analysis , 2010 .

[2]  Reinhard Beer,et al.  TES on the aura mission: scientific objectives, measurements, and analysis overview , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Pawan K. Bhartia,et al.  A global climatology of tropospheric and stratospheric ozone derived from Aura OMI and MLS measurements , 2011 .

[4]  Ernest Hilsenrath,et al.  The retrieval of O3 profiles from limb scatter measurements: Results from the Shuttle Ozone Limb Sounding Experiment , 2000 .

[5]  David M. Rider,et al.  Tropospheric emission spectrometer for the Earth Observing System’s Aura satellite , 2001 .

[6]  H. Worden,et al.  Validation of Tropospheric Emission Spectrometer (TES) nadir ozone profiles , 2008 .

[7]  Heinrich Bovensmann,et al.  SCIAMACHY - Exploring the Changing Earth's Atmosphere , 2011 .

[8]  J. Staehelin,et al.  In-flight comparison of Brewer-Mast and electrochemical concentration cell ozonesondes , 2008 .

[9]  F. Dominici,et al.  Ozone and short-term mortality in 95 US urban communities, 1987-2000. , 2004, JAMA.

[10]  Lance E. Christensen,et al.  Early validation analyses of atmospheric profiles from EOS MLS on the aura Satellite , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[11]  K. Bowman,et al.  Implementation of cloud retrievals for TES atmospheric retrievals: 2. Characterization of cloud top pressure and effective optical depth retrievals , 2008 .

[12]  Holger Vömel,et al.  Summer and spring ozone profiles over the North Atlantic from ozonesonde measurements , 1996 .

[13]  J. Holton,et al.  Stratosphere‐troposphere exchange , 1995 .

[14]  Reinhard Beer,et al.  Improved tropospheric ozone profile retrievals using OMI and TES radiances , 2007 .

[15]  Vladimir V. Rozanov,et al.  Ozone profiles from GOME satellite data : Algorithm description and first validation , 1999 .

[16]  K. Bowman,et al.  Implementation of cloud retrievals for Tropospheric Emission Spectrometer (TES) atmospheric retrievals: part 1. Description and characterization of errors on trace gas retrievals , 2006 .

[17]  C. Frankenberg,et al.  Relationship between ATSR fire counts and CO vertical column densities retrieved from SCIAMACHY onboard ENVISAT , 2008, Optical Engineering + Applications.

[18]  J. Burrows,et al.  Frost flowers on sea ice as a source of sea salt and their influence on tropospheric halogen chemistry , 2004 .

[19]  Reinhard Beer,et al.  Tropospheric emission spectrometer: retrieval method and error analysis , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Gilles Foret,et al.  Satellite observation of lowermost tropospheric ozone by multispectral synergism of IASI thermal infrared and GOME-2 ultraviolet measurements over Europe , 2013 .

[21]  R. B. A. Koelemeijer,et al.  Effects of clouds on ozone column retrieval from GOME UV measurements , 1999 .

[22]  J. Zawodny,et al.  Measurements of stratospheric NO2 from the Solar Mesosphere Explorer satellite: 1. An overview of the results , 1984 .

[23]  Jack Fishman,et al.  Intercontinental transport of tropospheric ozone: a study of its seasonal variability across the North Atlantic utilizing tropospheric ozone residuals and its relationship to the North Atlantic Oscillation , 2003 .

[24]  H. Bovensmann,et al.  Cloud sensitivity studies for stratospheric and lower mesospheric ozone profile retrievals from measurements of limb-scattered solar radiation , 2009 .

[25]  J. Fishman,et al.  Global distribution of tropospheric ozone from satellite measurements using the empirically corrected tropospheric ozone residual technique: Identification of the regional aspects of air pollution , 2003 .

[26]  H. Bovensmann,et al.  The geostationary scanning imaging absorption spectrometer (GeoSCIA) as part of the geostationary tropospheric pollution explorer (GeoTROPE) mission: requirements, concepts and capabilities , 2002 .

[27]  Michael J. Newchurch,et al.  Climatology and trends of tropospheric ozone over the eastern Pacific Ocean: The influences of biomass burning and tropospheric dynamics , 1996 .

[28]  Michael Eisinger,et al.  The Global Ozone Monitoring Experiment (GOME): Mission Concept and First Scientific Results , 1999 .

[29]  Brian J. Drouin,et al.  Validation of Aura Microwave Limb Sounder stratospheric ozone measurements , 2008 .

[30]  Johannes Orphal,et al.  The geostationary tropospheric pollution explorer (GeoTROPE) mission: objectives, requirements and mission concept , 2004 .

[31]  J. Burrows,et al.  Observations of iodine monoxide columns from satellite , 2007 .

[32]  Toshihiro Ogawa,et al.  Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998–2000 tropical ozone climatology 1. Comparison with Total Ozone Mapping Spectrometer (TOMS) and ground-based measurements , 2003 .

[33]  M. Newchurch,et al.  Distribution of Tropical Tropospheric Ozone Determined by the Scan-Angle Method Applied to TOMS Measurements , 2001 .

[34]  I. Aben,et al.  A model perspective on total tropospheric O3 column variability and implications for satellite observations , 2005 .

[35]  S. Singer,et al.  A method for the determination of the vertical ozone distribution from a satellite , 1957 .

[36]  William L. Smith,et al.  AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems , 2003, IEEE Trans. Geosci. Remote. Sens..

[37]  H. Mannstein,et al.  Aircraft measurements over Europe of an air pollution plume from Southeast Asia? aerosol and chemical characterization , 2008 .

[38]  Matthew T. DeLand,et al.  Solar Backscatter UV (SBUV) total ozone and profile algorithm , 2012 .

[39]  J. Staehelin,et al.  Changes in ozone over Europe: Analysis of ozone measurements from sondes, regular aircraft (MOZAIC) and alpine surface sites , 2012 .

[40]  Heikki Saari,et al.  The ozone monitoring instrument , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[41]  Xiong Liu,et al.  On the accuracy of Total Ozone Mapping Spectrometer retrievals over tropical cloudy regions , 2001 .

[42]  Gary A. Morris,et al.  A Trajectory-based Estimate of the Tropospheric Ozone Column Using the Residual Method , 2007 .

[43]  E. Danielsen,et al.  Stratospheric-Tropospheric Exchange Based on Radioactivity, Ozone and Potential Vorticity , 1968 .

[44]  J. Lelieveld,et al.  Global Air Pollution Crossroads over the Mediterranean , 2002, Science.

[45]  Hennie Kelder,et al.  Variability in tropical tropospheric ozone: Analysis with Global Ozone Monitoring Experiment observations and a global model , 2003 .

[46]  B. Doddridge,et al.  A tropical Atlantic Paradox: Shipboard and satellite views of a tropospheric ozone maximum and wave‐one in January–February 1999 , 2000 .

[47]  Michael Sprenger,et al.  Stratosphere‐troposphere exchange: A review, and what we have learned from STACCATO , 2003 .

[48]  Gert König-Langlo,et al.  The Polar Ozone and Aerosol Measurement (POAM) III instrument and early validation results , 1999 .

[49]  Kelly Chance,et al.  Stratospheric and tropospheric NO2 observed by SCIAMACHY: first results , 2004 .

[50]  Kristie L. Ebi,et al.  Climate Change, Tropospheric Ozone and Particulate Matter, and Health Impacts , 2008, Environmental health perspectives.

[51]  M. Lippmann Health effects of tropospheric ozone , 1991 .

[52]  J. Burrows,et al.  The Brewer-Dobson circulation and total ozone from seasonal to decadal time scales , 2011 .

[53]  R. Martin,et al.  Tropical tropospheric ozone: Implications for dynamics and biomass burning , 2002 .

[54]  A. Kokhanovsky,et al.  Radiative transfer through terrestrial atmosphere and ocean: Software package SCIATRAN , 2014 .

[55]  M. Newchurch,et al.  Intercontinental chemical transport experiment ozonesonde network study (IONS) 2004 : 1. Summertime upper troposphere/lower stratosphere ozone over northeastern North America. , 2007 .

[56]  A. Thompson,et al.  Tropical Tropospheric Ozone (TTO) Maps from Nimbus 7 and Earth-Probe TOMS by the Modified-Residual Method. 1; Validation, Evaluation and Trends based on Atlantic Regional Time Series , 1999 .

[57]  Klaus P. Hoinka,et al.  Statistics of the Global Tropopause Pressure , 1998 .

[58]  J. Burrows,et al.  Improvements to the retrieval of tropospheric NO 2 from satellite – stratospheric correction using SCIAMACHY limb/nadir matching and comparison to Oslo CTM2 simulations , 2013 .

[59]  M. Newchurch,et al.  Biomass-burning influence on tropospheric ozone over New Guinea and South America , 1998 .

[60]  P. Bhartia,et al.  Validation of ozone monthly zonal mean profiles obtained from the version 8.6 Solar Backscatter Ultraviolet algorithm , 2013 .

[61]  H. Bovensmann,et al.  Global and long-term comparison of SCIAMACHY limb ozone profiles with correlative satellite data (2002–2008) , 2011 .

[62]  H. Levy,et al.  Tropospheric ozone : the role of transport. , 1985 .

[63]  Pawan K. Bhartia,et al.  Two new methods for deriving tropospheric column ozone from TOMS measurements: Assimilated UARS MLS/HALOE and convective‐cloud differential techniques , 1998 .

[64]  Xiong Liu,et al.  Ozone profile retrievals from the Ozone Monitoring Instrument , 2009 .

[65]  Xiong Liu,et al.  First Directly Retrieved Global Distribution of Tropospheric Column Ozone from GOME: Comparison with the GEOS-CHEM Model , 2006 .

[66]  Jack Fishman,et al.  Distribution of tropospheric ozone determined from satellite data , 1990 .

[67]  A. Thompson,et al.  Assessment of the performance of ECC‐ozonesondes under quasi‐flight conditions in the environmental simulation chamber: Insights from the Juelich Ozone Sonde Intercomparison Experiment (JOSIE) , 2007 .

[68]  W. Gao,et al.  Ozone production in summer in the megacities of Tianjin and Shanghai, China: a comparative study , 2012 .

[69]  Philip J. Rasch,et al.  MOZART, a global chemical transport model for ozone and related chemical tracers: 1. Model description , 1998 .

[70]  Mohamed Moustaoui,et al.  Comparison between vertical ozone soundings and reconstructed potential vorticity maps by contour advection with surgery , 1997 .

[71]  Jack Fishman,et al.  Calculation of daily tropospheric ozone residuals using TOMS and empirically improved SBUV measurements: Application to an ozone pollution episode over the eastern United States , 1999 .

[72]  J. Willis,et al.  Meridional overturning circulation and heat transport observations in the Atlantic Ocean [in 'state of the Climate in 2012'] , 2013 .

[73]  Global satellite validation of SCIAMACHY O 3 columns with GOME WFDOAS , 2005 .

[74]  A. Thompson,et al.  Tropospheric ozone sources and wave activity over Mexico City and Houston during MILAGRO/Intercontinental Transport Experiment (INTEX-B) Ozonesonde Network Study, 2006 (IONS-06) , 2008 .

[75]  John P. Burrows,et al.  SCIAMACHY—scanning imaging absorption spectrometer for atmospheric chartography , 1992 .

[76]  John P. Burrows,et al.  Pole-to-pole validation of GOME WFDOAS total ozone with groundbased data , 2004 .

[77]  J. Logan Tropospheric ozone: Seasonal behavior, trends, and anthropogenic influence , 1985 .

[78]  Pasquale Sellitto,et al.  Global tropospheric ozone column retrievals from OMI data by means of neural networks , 2012 .

[79]  S. Beirle,et al.  Retrieval of tropospheric column densities of NO2 from combined SCIAMACHY nadir/limb measurements , 2009 .

[80]  Paul J. Crutzen,et al.  Influence of NOx emissions from ships on tropospheric photochemistry and climate , 1999, Nature.

[81]  J. Logan,et al.  Seasonal variations of tropospheric ozone at Natal, Brazil , 1986 .

[82]  David W. Rusch,et al.  Solar Mesosphere Explorer Ultraviolet Spectrometer: Measurements of ozone in the 1.0–0.1 mbar region , 1984 .

[83]  Dimitris Balis,et al.  Validation of Ozone Monitoring Instrument total ozone column measurements using Brewer and Dobson spectrophotometer ground‐based observations , 2007 .

[84]  Michael Buchwitz,et al.  Total ozone retrieval from GOME UV spectral data using the weighting function DOAS approach , 2004 .

[85]  Jack Fishman,et al.  Arctic Oscillation–induced variability in satellite‐derived tropospheric ozone , 2005 .

[86]  J. Fishman,et al.  Distribution of total ozone and stratospheric ozone in the tropics: Implications for the distribution of tropospheric ozone , 1987 .

[87]  J. Fuhrer,et al.  Ecological issues related to ozone: agricultural issues. , 2003, Environment international.

[88]  Robert E. Veiga,et al.  An overview of sage I and II ozone measurements , 1989 .

[89]  John P. Burrows,et al.  Ozone profile retrieval from Global Ozone Monitoring Experiment (GOME) data using a neural network approach (Neural Network Ozone Retrieval System (NNORSY)) , 2003 .

[90]  J. Milford,et al.  The Oxford-Kew ozone sonde , 1960, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[91]  J. Burrows,et al.  Influence of stratospheric airmasses on tropospheric vertical O 3 columns based on GOME (Global Ozone Monitoring Experiment) measurements and backtrajectory calculation over the Pacific , 2004 .

[92]  Benjamin M. Herman,et al.  O3 profiles retrieved from limb scatter measurements: Theory , 2000 .

[93]  Peter H. Siegel,et al.  The Earth observing system microwave limb sounder (EOS MLS) on the aura Satellite , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[94]  D. Fussen,et al.  A volcanism dependent model for the extinction profile of stratospheric aerosols in the UV‐visible range , 1999 .

[95]  C. Frankenberg,et al.  Monitoring of atmospheric trace gases, clouds, aerosols and surface properties from UV/vis/NIR satellite instruments , 2008 .

[96]  G. Rohen Retrieval of Upper Stratospheric and Lower Mesospheric Ozone Profiles from SCIAMACHY Limb Scatter Measurements and Observations of the Ozone Depletion During the Solar Proton Event in October and November 2003 , 2007 .

[97]  Randall V. Martin,et al.  Tropospheric ozone at tropical and middle latitudes derived from TOMS/MLS residual: Comparison with a global model , 2003 .

[98]  M. Buchwitz,et al.  Retrieval And Monitoring of Atmospheric Trace Gas Concentrations in Nadir and Limb Geometry Using the Space-Borne Sciamachy Instrument , 2006, Environmental monitoring and assessment.

[99]  A. Kokhanovsky,et al.  SCIATRAN 2.0 – A new radiative transfer model for geophysical applications in the 175–2400 nm spectral region , 2004 .

[100]  J. Burrows,et al.  IMPROVED SCIAMACHY WFDOAS TOTAL OZONE RETRIEVAL: STEPS TOWARDS HOMOGENISING LONG-TERM TOTAL OZONE DATASETS FROM GOME, SCIAMACHY, AND GOME2 , 2007 .

[101]  Johannes Orphal,et al.  ATMOSPHERIC REMOTE-SENSING REFERENCE DATA FROM GOME: PART 1. TEMPERATURE-DEPENDENT ABSORPTION CROSS-SECTIONS OF NO2 IN THE 231–794 nm RANGE , 1998 .

[102]  G. Brasseur,et al.  Elevated ozone in the troposphere over the Atlantic and Pacific oceans in the Northern Hemisphere , 2004 .

[103]  K. Bowman,et al.  Validation of Tropospheric Emission Spectrometer (TES) measurements of the total, stratospheric, and tropospheric column abundance of ozone , 2008 .

[104]  A. Kokhanovsky,et al.  The physical parameterization of the top-of-atmosphere reflection function for a cloudy atmosphere—underlying surface system: the oxygen A-band case study , 2004 .

[105]  Pawan K. Bhartia,et al.  Tropospheric Ozone Determined from Aura OMI and MLS: Evaluation of Measurements and Comparison with the Global Modeling Initiative's Chemical Transport Model , 2006 .

[106]  W. Komhyr Nonreactive Gas Sampling Pump , 1967 .

[107]  H. Bovensmann,et al.  Error budget analysis of SCIAMACHY limb ozone profile retrievals using the SCIATRAN model , 2013 .

[108]  Paul Ginoux,et al.  Interpretation of TOMS observations of tropical tropospheric ozone with a global model and in-situ observations , 2002 .

[109]  Brian J. Kerridge,et al.  Direct measurement of tropospheric ozone distributions from space , 1998, Nature.

[110]  M. Toohey,et al.  Characterizing sampling biases in the trace gas climatologies of the SPARC Data Initiative , 2013 .

[111]  K. F. Boersma,et al.  Tropospheric vertical distribution of tropical Atlantic ozone observed by TES during the northern African biomass burning season , 2007 .

[112]  Xiong Liu,et al.  Ozone profile and tropospheric ozone retrievals from the Global Ozone Monitoring Experiment: Algorithm description and validation , 2005 .

[113]  E. J. Llewellyn,et al.  Stratospheric ozone profiles retrieved from limb scattered sunlight radiance spectra measured by the OSIRIS instrument on the Odin satellite , 2003 .

[114]  M. Buchwitz,et al.  SCIAMACHY: Mission Objectives and Measurement Modes , 1999 .

[115]  H. Wernli,et al.  A Lagrangian “1‐year climatology” of (deep) cross‐tropopause exchange in the extratropical Northern Hemisphere , 2002 .

[116]  Johannes Orphal,et al.  Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: instrument characterization and reference data for atmospheric remote-sensing in the 230–2380 nm region , 2003 .

[117]  James M. Russell,et al.  The Halogen Occultation Experiment , 1993 .

[118]  Paul J. Crutzen,et al.  Interannual variability of stratospheric and tropospheric ozone determined from satellite measurements , 2005 .

[119]  Xiong Liu,et al.  Tropospheric ozone column retrieval at northern mid-latitudes from the Ozone Monitoring Instrument by means of a neural network algorithm , 2011 .

[120]  M. Prather,et al.  Tropospheric column ozone: matching individual profiles from Aura OMI and TES with a chemistry-transport model , 2012 .

[121]  Annmarie Eldering,et al.  Multi-spectral sensitivity studies for the retrieval of tropospheric and lowermost tropospheric ozone from simulated clear-sky GEO-CAPE measurements , 2011 .

[122]  Louisa Emmons,et al.  Analysis of the Summer 2004 ozone budget over the United States using Intercontinental Transport Experiment Ozonesonde Network Study (IONS) observations and Model of Ozone and Related Tracers (MOZART-4) simulations , 2008 .

[123]  W. Komhyr,et al.  Development of an ECC Ozonesonde , 1971 .

[124]  H. Levy,et al.  A model analysis of the tropical South Atlantic Ocean tropospheric ozone maximum: The interaction of transport and chemistry , 2000 .

[125]  John P. Burrows,et al.  Retrieval of atmospheric constituents in the uv-visible: a new quasi-analytical approach for the calculation of weighting functions , 1998 .

[126]  J. Lamarque,et al.  Multimodel ensemble simulations of present-day and near-future tropospheric ozone , 2006 .

[127]  J. Lamarque,et al.  Tropospheric ozone over the tropical Atlantic: A satellite perspective , 2003 .

[128]  J. Kobayashi,et al.  On Various Methods of Measuring the Vertical Distribution of Atmospheric Ozone (III): Carbon-iodine Type Chemical Ozonesonde@@@炭素-沃素方式オゾンゾンデ , 1966 .

[129]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[130]  K. F. Boersma,et al.  Transpacific transport of ozone pollution and the effect of recent Asian emission increases on air quality in North America: an integrated analysis using satellite, aircraft, ozonesonde, and surface observations , 2008 .

[131]  Lawrence E. Flynn,et al.  Algorithm for the estimation of vertical ozone profiles from the backscattered ultraviolet technique , 1996 .